
Importing sequences from flat files

Charif, D. Lobry, J.R.

June 2, 2016

Contents

1 Importing raw sequence data from FASTA files 1
1.1 FASTA files examples . 1
1.2 The function read.fasta() . 2

1.2.1 DNA file example . 2
1.2.2 Protein file example . 4
1.2.3 Compressed file example 5

1.3 The function write.fasta() . 6
1.4 Big room examples . 6

1.4.1 Oriloc example (Chlamydia trachomatis complete genome) 6
1.4.2 Example with 21,161 proteins from Arabidobpsis thaliana 10

2 Importing aligned sequence data 20
2.1 Aligned sequences files examples 20

2.1.1 mase . 20
2.1.2 clustal . 20
2.1.3 phylip . 21
2.1.4 msf . 22
2.1.5 FASTA . 23

2.2 The function read.alignment() 24
2.3 A simple example with the louse-gopher data 25

References 29

1 Importing raw sequence data from FASTA files

1.1 FASTA files examples

The FASTA format is very simple and widely used for simple import of biological
sequences. It was used originally by the FASTA program [13]. It begins with a
single-line description starting with a character ’>’, followed by lines of sequence
data of maximum 80 character each. Lines starting with a semi-colon character
’;’ are comment lines. Examples of files in FASTA format are distributed with
the seqinR package in the sequences directory:

1

list.files(path = system.file("sequences", package = "seqinr"), pattern = ".fasta")

[1] "Anouk.fasta" "bordetella.fasta" "ct.fasta.gz"
[4] "DarrenObbard.fasta" "ecolicgpe5.fasta" "gopher.fasta"
[7] "humanMito.fasta" "legacy.fasta" "louse.fasta"
[10] "malM.fasta" "ortho.fasta" "seqAA.fasta"
[13] "smallAA.fasta" "smallAA.fasta.gz"

Here is an example of a FASTA file:

cat(readLines(system.file("sequences/seqAA.fasta", package = "seqinr")), sep = "\n")

>A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC*

Here is an example of a FASTA file with comment lines:

cat(readLines(system.file("sequences/legacy.fasta", package = "seqinr")), sep = "\n")

>LEGACY 921 bp
;
; Example of a FASTA file using comment lines starting with a semicolon
; as allowed in the original FASTA program:
;
; if (line[0]!='>'&& line[0]!=';') {
; for (i=l_offset; (n<maxs && rn < sstop)&&
; ((ic=qascii[line[i]&AAMASK])<EL); i++)
; if (ic<NA && ++rn > sstart) seq[n++]= ic;
; if (ic == ES || rn > sstop) break;
; }
;
; From file getseq.c in FASTA program version 35.2.5
;
ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

1.2 The function read.fasta()

The function read.fasta() imports sequences from FASTA files into your
workspace.

1.2.1 DNA file example

The example file looks like:

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
cat(readLines(dnafile), sep = "\n")

2

>XYLEECOM.MALM 921 bp ACCESSION E00218, X04477
ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

With default arguments the output looks like:

read.fasta(file = dnafile)

$XYLEECOM.MALM
[1] "a" "t" "g" "a" "a" "a" "a" "t" "g" "a" "a" "t" "a" "a" "a" "a" "g" "t"
[19] "c" "t" "c" "a" "t" "c" "g" "t" "c" "c" "t" "c" "t" "g" "t" "t" "t" "a"
[37] "t" "c" "a" "g" "c" "a" "g" "g" "g" "t" "t" "a" "c" "t" "g" "g" "c" "a"
[55] "a" "g" "c" "g" "c" "g" "c" "c" "t" "g" "g" "a" "a" "t" "t" "a" "g" "c"
[73] "c" "t" "t" "g" "c" "c" "g" "a" "t" "g" "t" "t" "a" "a" "c" "t" "a" "c"
[91] "g" "t" "a" "c" "c" "g" "c" "a" "a" "a" "a" "c" "a" "c" "c" "a" "g" "c"
[109] "g" "a" "c" "g" "c" "g" "c" "c" "a" "g" "c" "c" "a" "t" "t" "c" "c" "a"
[127] "t" "c" "t" "g" "c" "t" "g" "c" "g" "c" "t" "g" "c" "a" "a" "c" "a" "a"
[145] "c" "t" "c" "a" "c" "c" "t" "g" "g" "a" "c" "a" "c" "c" "g" "g" "t" "c"
[163] "g" "a" "t" "c" "a" "a" "t" "c" "t" "a" "a" "a" "a" "c" "c" "c" "a" "g"
[181] "a" "c" "c" "a" "c" "c" "c" "a" "a" "c" "t" "g" "g" "c" "g" "a" "c" "c"
[199] "g" "g" "c" "g" "g" "c" "c" "a" "a" "c" "a" "a" "c" "t" "g" "a" "a" "c"
[217] "g" "t" "t" "c" "c" "c" "g" "g" "c" "a" "t" "c" "a" "g" "t" "g" "g" "t"
[235] "c" "c" "g" "g" "t" "t" "g" "c" "t" "g" "c" "g" "t" "a" "c" "a" "g" "c"
[253] "g" "t" "c" "c" "c" "g" "g" "c" "a" "a" "a" "c" "a" "t" "t" "g" "g" "c"
[271] "g" "a" "a" "c" "t" "g" "a" "c" "c" "c" "t" "g" "a" "c" "g" "c" "t" "g"
[289] "a" "c" "c" "a" "g" "c" "g" "a" "a" "g" "t" "g" "a" "a" "c" "a" "a" "a"
[307] "c" "a" "a" "a" "c" "c" "a" "g" "c" "g" "t" "t" "t" "t" "t" "g" "c" "g"
[325] "c" "c" "g" "a" "a" "c" "g" "t" "g" "c" "t" "g" "a" "t" "t" "c" "t" "t"
[343] "g" "a" "t" "c" "a" "g" "a" "a" "c" "a" "t" "g" "a" "c" "c" "c" "c" "a"
[361] "t" "c" "a" "g" "c" "c" "t" "t" "c" "t" "t" "c" "c" "c" "c" "a" "g" "c"
[379] "a" "g" "t" "t" "a" "t" "t" "t" "c" "a" "c" "c" "t" "a" "c" "c" "a" "g"
[397] "g" "a" "a" "c" "c" "a" "g" "g" "c" "g" "t" "g" "a" "t" "g" "a" "g" "t"
[415] "g" "c" "a" "g" "a" "t" "c" "g" "g" "c" "t" "g" "g" "a" "a" "g" "g" "c"
[433] "g" "t" "t" "a" "t" "g" "c" "g" "c" "c" "t" "g" "a" "c" "a" "c" "c" "g"
[451] "g" "c" "g" "t" "t" "g" "g" "g" "g" "c" "a" "g" "c" "a" "a" "a" "a" "a"
[469] "c" "t" "t" "t" "a" "t" "g" "t" "t" "c" "t" "g" "g" "t" "c" "t" "t" "t"
[487] "a" "c" "c" "a" "c" "g" "g" "a" "a" "a" "a" "a" "g" "a" "t" "c" "t" "c"
[505] "c" "a" "g" "c" "a" "g" "a" "c" "g" "a" "c" "c" "c" "a" "a" "c" "t" "g"
[523] "c" "t" "c" "g" "a" "c" "c" "c" "g" "g" "c" "t" "a" "a" "a" "g" "c" "c"
[541] "t" "a" "t" "g" "c" "c" "a" "a" "g" "g" "g" "c" "g" "t" "c" "g" "g" "t"
[559] "a" "a" "c" "t" "c" "g" "a" "t" "c" "c" "c" "g" "g" "a" "t" "a" "t" "c"
[577] "c" "c" "c" "g" "a" "t" "c" "c" "g" "g" "t" "t" "g" "c" "t" "c" "g" "t"
[595] "c" "a" "t" "a" "c" "c" "a" "c" "c" "g" "a" "t" "g" "g" "c" "t" "t" "a"
[613] "c" "t" "g" "a" "a" "a" "c" "t" "g" "a" "a" "a" "g" "t" "g" "a" "a" "a"
[631] "a" "c" "g" "a" "a" "c" "t" "c" "c" "a" "g" "c" "t" "c" "c" "a" "g" "c"
[649] "g" "t" "g" "t" "t" "g" "g" "t" "a" "g" "g" "a" "c" "c" "c" "t" "t" "a"
[667] "t" "t" "t" "g" "g" "t" "t" "c" "c" "t" "c" "c" "g" "c" "t" "c" "c" "a"
[685] "g" "c" "t" "c" "c" "g" "g" "t" "t" "a" "c" "g" "g" "t" "a" "g" "g" "t"
[703] "a" "a" "c" "a" "c" "g" "g" "c" "g" "g" "c" "a" "c" "c" "a" "g" "c" "t"
[721] "g" "t" "g" "g" "c" "t" "g" "c" "a" "c" "c" "c" "g" "c" "t" "c" "c" "g"
[739] "g" "c" "a" "c" "c" "g" "g" "t" "g" "a" "a" "g" "a" "a" "a" "a" "g" "c"
[757] "g" "a" "g" "c" "c" "g" "a" "t" "g" "c" "t" "c" "a" "a" "c" "g" "a" "c"
[775] "a" "c" "g" "g" "a" "a" "a" "g" "t" "t" "a" "t" "t" "t" "t" "a" "a" "t"
[793] "a" "c" "c" "g" "c" "g" "a" "t" "c" "a" "a" "a" "a" "a" "c" "g" "c" "t"

3

[811] "g" "t" "c" "g" "c" "g" "a" "a" "a" "g" "g" "t" "g" "a" "t" "g" "t" "t"
[829] "g" "a" "t" "a" "a" "g" "g" "c" "g" "t" "t" "a" "a" "a" "a" "c" "t" "g"
[847] "c" "t" "t" "g" "a" "t" "g" "a" "a" "g" "c" "t" "g" "a" "a" "c" "g" "c"
[865] "t" "t" "g" "g" "g" "a" "t" "c" "g" "a" "c" "a" "t" "c" "t" "g" "c" "c"
[883] "c" "g" "t" "t" "c" "c" "a" "c" "c" "t" "t" "t" "a" "t" "c" "a" "g" "c"
[901] "a" "g" "t" "g" "t" "a" "a" "a" "a" "g" "g" "c" "a" "a" "g" "g" "g" "g"
[919] "t" "a" "a"
attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters can be neutralized, for instance:

read.fasta(file = dnafile, as.string = TRUE)

$XYLEECOM.MALM
[1] "atgaaaatgaataaaagtctcatcgtcctctgtttatcagcagggttactggcaagcgcgcctggaattagccttgccgatgttaactacgtaccgcaaaacaccagcgacgcgccagccattccatctgctgcgctgcaacaactcacctggacaccggtcgatcaatctaaaacccagaccacccaactggcgaccggcggccaacaactgaacgttcccggcatcagtggtccggttgctgcgtacagcgtcccggcaaacattggcgaactgaccctgacgctgaccagcgaagtgaacaaacaaaccagcgtttttgcgccgaacgtgctgattcttgatcagaacatgaccccatcagccttcttccccagcagttatttcacctaccaggaaccaggcgtgatgagtgcagatcggctggaaggcgttatgcgcctgacaccggcgttggggcagcaaaaactttatgttctggtctttaccacggaaaaagatctccagcagacgacccaactgctcgacccggctaaagcctatgccaagggcgtcggtaactcgatcccggatatccccgatccggttgctcgtcataccaccgatggcttactgaaactgaaagtgaaaacgaactccagctccagcgtgttggtaggacccttatttggttcctccgctccagctccggttacggtaggtaacacggcggcaccagctgtggctgcacccgctccggcaccggtgaagaaaagcgagccgatgctcaacgacacggaaagttattttaataccgcgatcaaaaacgctgtcgcgaaaggtgatgttgataaggcgttaaaactgcttgatgaagctgaacgcttgggatcgacatctgcccgttccacctttatcagcagtgtaaaaggcaaggggtaa"
attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

Forcing to lower case letters can be disabled this way:

read.fasta(file = dnafile, as.string = TRUE, forceDNAtolower = FALSE)

$XYLEECOM.MALM
[1] "ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCGCCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCCATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAGACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTTGCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTGAACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCATCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGATCGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTGGTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCCTATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACCACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGACCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCTGTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAAAGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTAAAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGCAGTGTAAAAGGCAAGGGGTAA"
attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

1.2.2 Protein file example

The example file looks like:

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
cat(readLines(aafile), sep = "\n")

>A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC*

Read the protein sequence file, looks like:

read.fasta(aafile, seqtype = "AA")

$A06852
[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L" "L" "L" "S" "Q" "L"
[19] "P" "R" "E" "I" "P" "G" "Q" "S" "T" "N" "D" "F" "I" "K" "A" "C" "G" "R"
[37] "E" "L" "V" "R" "L" "W" "V" "E" "I" "C" "G" "S" "V" "S" "W" "G" "R" "T"
[55] "A" "L" "S" "L" "E" "E" "P" "Q" "L" "E" "T" "G" "P" "P" "A" "E" "T" "M"
[73] "P" "S" "S" "I" "T" "K" "D" "A" "E" "I" "L" "K" "M" "M" "L" "E" "F" "V"
[91] "P" "N" "L" "P" "Q" "E" "L" "K" "A" "T" "L" "S" "E" "R" "Q" "P" "S" "L"
[109] "R" "E" "L" "Q" "Q" "S" "A" "S" "K" "D" "S" "N" "L" "N" "F" "E" "E" "F"
[127] "K" "K" "I" "I" "L" "N" "R" "Q" "N" "E" "A" "E" "D" "K" "S" "L" "L" "E"

4

[145] "L" "K" "N" "L" "G" "L" "D" "K" "H" "S" "R" "K" "K" "R" "L" "F" "R" "M"
[163] "T" "L" "S" "E" "K" "C" "C" "Q" "V" "G" "C" "I" "R" "K" "D" "I" "A" "R"
[181] "L" "C" "*"
attr(,"name")
[1] "A06852"
attr(,"Annot")
[1] ">A06852 183 residues"
attr(,"class")
[1] "SeqFastaAA"

The same, but as string and without attributes setting, looks like:

read.fasta(aafile, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)

$A06852
[1] "MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEEPQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSNLNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIARLC*"

1.2.3 Compressed file example

The original file before compression looks like:

uncompressed <- system.file("sequences/smallAA.fasta", package = "seqinr")
cat(readLines(uncompressed), sep = "\n")

>smallAA A very small AA file in FASTA format
SEQINRSEQINRSEQINRSEQINR*

The compressed file example is full of mojibakes because of its binary nature,
but the readLines() is still able to read it correctly:

compressed <- system.file("sequences/smallAA.fasta.gz", package = "seqinr")
readChar(compressed, nchar = 1000, useBytes = TRUE)

[1] "\037\x8b\b\b\xd4\024PW"

cat(readLines(compressed), sep = "\n")

>smallAA A very small AA file in FASTA format
SEQINRSEQINRSEQINRSEQINR*

We can therefore import the sequences directly from a gzipped file:

res1 <- read.fasta(uncompressed)
res2 <- read.fasta(compressed)
identical(res1, res2)

[1] TRUE

This automatic conversion works well for local files but is no more active
when you read the data from an URL, for instance:

myurl <- "ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/plasmid.1.rna.fna.gz"
try.res <- try(read.fasta(myurl))
try.res

[1] "Error in read.fasta(myurl) : no line starting with a > character found\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in read.fasta(myurl): no line starting with a > character found>

A simple workthrough is to encapsulate this into gzcon() :

myseq <- read.fasta(gzcon(url(myurl)))
getName(myseq)

[1] "gi|470467018|ref|NR_074151.1|" "gi|444303868|ref|NR_074290.1|"
[3] "gi|452192228|ref|NR_075742.1|" "gi|451991842|ref|NR_075394.1|"
[5] "gi|451991838|ref|NR_075390.1|" "gi|444303919|ref|NR_074342.1|"
[7] "gi|470486111|ref|NR_076736.1|" "gi|470480648|ref|NR_076426.1|"
[9] "gi|470478007|ref|NR_076423.1|"

5

1.3 The function write.fasta()

This function writes sequences to a file in FASTA format. Read 3 coding se-
quences sequences from a FASTA file:

ortho <- read.fasta(file = system.file("sequences/ortho.fasta", package = "seqinr"))
length(ortho)

[1] 3

ortho[[1]][1:12]

[1] "a" "t" "g" "g" "c" "t" "c" "a" "g" "c" "g" "g"

Select only third codon positions:

ortho3 <- lapply(ortho, function(x) x[seq(from = 3, to = length(x), by = 3)])
ortho3[[1]][1:4]

[1] "g" "t" "g" "g"

Write the modified sequences to a file:

tmpf <- tempfile()
write.fasta(sequences = ortho3, names = names(ortho3), nbchar = 80, file.out = tmpf)

Read them again from the same file and check that sequences are preserved:

ortho3bis <- read.fasta(tmpf, set.attributes = FALSE)
identical(ortho3bis, ortho3)

[1] TRUE

1.4 Big room examples

1.4.1 Oriloc example (Chlamydia trachomatis complete genome)

A more consequent example is given in the fasta file ct.fasta.gz which contains
the complete genome of Chlamydia trachomatis that was used in [2]. You should
be able to reproduce figure 1b from this paper (cf. screenshot in figure 1) with
the following code:

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package ="seqinr"),
g2.coord = system.file("sequences/ct.predict", package = "seqinr"),
oldoriloc = TRUE)

plot(outst, outsk/1000, type="l", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb",
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome), las = 1)

abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

6

Figure 1: . Screenshot copy of figure 1 from [2]. The complete genome sequence
of Chlamydia trachomatis (accession number: AE001273) was used to illustrate
the method used by oriloc. (a) A DNA-walk is performed by reading the
sequence in the third codon positions predicted by glimmer and walking into
the plane according to the four directions defined by the four bases as indicated
on the bottom left of the figure. The resulting DNA-walk is then summarized
by projection onto the orthogonal regression line pointing out at about 11
o’clock in the figure. (b) The projected values are used as a composite skew
index plotted versus map position on the chromosome. The origin is predicted
at the maximum skew value while the terminus is predicted at the minimum.

7

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

Terminus

Origin

Note that the algorithm has been improved since then and that it’s more
advisable to use the default option oldoriloc = FALSE if you are interested in
the prediction of origins and terminus of replication from base composition biases
(more on this at http://pbil.univ-lyon1.fr/software/oriloc.html). See
also [11] for a review on this topic. Here is the improved version:

out <- oriloc()
plot(outst, outsk/1000, type="l", xlab = "Map position in Kb",

ylab = "Cumulated composite skew in Kb",
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome), las = 1)

mtext("New version")
abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

8

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

New version

Terminus

Origin

You can also call the draw.oriloc() function for the simultaneous repre-
sentation of the CDS, AT and GC skew along with the combined skew of the
previous plots:

draw.oriloc(out,
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome),
ta.mtext = "TA skew", ta.col = "red",
cg.mtext = "CG skew", cg.col = "blue",
cds.mtext = "CDS skew", cds.col = "seagreen",
add.grid = FALSE)

9

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
bi

ne
d

sk
ew

 in
 K

b

−
50

−
40

−
30

−
20

−
10

0
10

20

TA skew CG skew CDS skew

1.4.2 Example with 21,161 proteins from Arabidobpsis thaliana

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters and the automatic attribute settings can be neutralized, for
instance :

smallAA <- system.file("sequences/smallAA.fasta", package = "seqinr")
read.fasta(smallAA, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)

$smallAA
[1] "SEQINRSEQINRSEQINRSEQINR*"

This is interesting to save time and space when reading large FASTA files.
Let’s give a practical example. In their paper [5], Matthew Hannah, Arnd Heyer

Arabidobpsis thaliana.
Source: wikipedia.and Dirk Hincha were working on Arabidobpsis thaliana genes in order to detect

those involved in cold acclimation. They were interested by the detection of
proteins called hydrophilins, that had a mean hydrophilicity of over 1 and glycine
content of over 0.08 [4], because they are though to be important for freezing
tolerance. The starting point was a FASTA file called ATH1_pep_cm_20040228

downloaded from the Arabidopsis Information Ressource (TAIR at http://

www.arabidopsis.org/) which contains the sequences of 21,161 proteins.

athfile <- "ATH1_pep_cm_20040228.fasta"
download.file(paste("http://seqinr.r-forge.r-project.org", athfile, sep = "/"),

athfile)
system.time(ath <- read.fasta(athfile, seqtype = "AA", as.string = TRUE,

set.attributes = FALSE))

10

user system elapsed
3.827 0.036 3.863

It’s about 10 seconds here to read 21,161 protein sequences. We save them
in XDR binary format1 to read them faster later at will:

save(ath, file = "ath.RData")

system.time(load("ath.RData"))

user system elapsed
0.161 0.002 0.162

Now it’s less than a second to load the whole data set thanks to the XDR
format. The object size is about 15 Mo in RAM, that is something very close
to the flat file size on disk:

object.size(ath)/2^20

16.2128143310547 bytes

file.info(athfile)$size/2^20

[1] 15.89863

Using strings for sequence storage is very comfortable when there is an effi-
cient function to compute what you want. For instance, suppose that you are
interested by the distribution of protein size in Arabidopsis thaliana. There is
an efficient vectorized function called nchar() that will do the job, we just have
to remove one unit because of the stop codon which is translated as a star (*)
in this data set. This is a simple and direct task under :

nres <- nchar(ath) - 1
hist(log10(nres), col = grey(0.7), xlab = "Protein size (log10 scale)",
ylab = "Protein count",
main = expression(italic(Arabidopsis~~thaliana)))

1this is a multi-platform compatible binary format: you can save data under unix and load
them under Mac OS X, for instance, without problem.

11

Arabidopsis thal iana

Protein size (log10 scale)

P
ro

te
in

 c
ou

nt

1.5 2.0 2.5 3.0 3.5

0
20

00
40

00
60

00
80

00

However, sometimes it is more convenient to work with the single character
vector representation of sequences. For instance, to count the number of glycine
(G), we first play with one sequence, let’s take the smallest one in the data set:

which.min(nres)

At2g25990.1
9523

ath[[9523]]

[1] "MAGSQREKLKPRTKGSTRC*"

s2c(ath[[9523]])

[1] "M" "A" "G" "S" "Q" "R" "E" "K" "L" "K" "P" "R" "T" "K" "G" "S" "T" "R"
[19] "C" "*"

s2c(ath[[9523]]) == "G"

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

sum(s2c(ath[[9523]]) == "G")

[1] 2

We can now easily define a vectorised function to count the number of
glycine:

ngly <- function(data){
res <- sapply(data, function(x) sum(s2c(x) == "G"))
names(res) <- NULL
return(res)
}

12

Now we can use ngly() in the same way that nchar() so that computing
glycine frequencies is very simple:

ngly(ath[1:10])

[1] 25 5 29 128 8 27 27 26 21 18

fgly <- ngly(ath)/nres

And we can have a look at the distribution:

hist(fgly, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")
abline(v = 0.08, col = "red")
legend("topright",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

Distribution of Glycine frequency

Glycine content

P
ro

te
in

 c
ou

nt

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

00
10

00
0

15
00

0
20

00
0

Threshold for hydrophilines

Let’s use a boxplot instead:

boxplot(fgly, horizontal = TRUE, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")
abline(v = 0.08, col = "red")
legend("topright",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

13

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Distribution of Glycine frequency

Glycine content

P
ro

te
in

 c
ou

nt

Threshold for hydrophilines

The threshold value for the glycine content in hydrophilines is therefore very
close to the third quartile of the distribution:

summary(fgly)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.04907 0.06195 0.06475 0.07639 0.59240

We want now to compute something relatively more complex, we want the
Kyte and Doolittle [9] hydropathy score of our proteins (aka GRAVY score).
This is basically a linear form on amino acid frequencies:

s =
20∑

i=1
αifi

where αi is the coefficient for amino acid number i and fi the relative frequency
of amino acid number i. The coefficients αi are given in the KD component of
the data set EXP:

data(EXP)
EXP$KD

[1] -3.9 -3.5 -3.9 -3.5 -0.7 -0.7 -0.7 -0.7 -4.5 -0.8 -4.5 -0.8 4.5 4.5
[15] 1.9 4.5 -3.5 -3.2 -3.5 -3.2 -1.6 -1.6 -1.6 -1.6 -4.5 -4.5 -4.5 -4.5
[29] 3.8 3.8 3.8 3.8 -3.5 -3.5 -3.5 -3.5 1.8 1.8 1.8 1.8 -0.4 -0.4
[43] -0.4 -0.4 4.2 4.2 4.2 4.2 0.0 -1.3 0.0 -1.3 -0.8 -0.8 -0.8 -0.8
[57] 0.0 2.5 -0.9 2.5 3.8 2.8 3.8 2.8

This is for codons in lexical order, that is:

14

words()

[1] "aaa" "aac" "aag" "aat" "aca" "acc" "acg" "act" "aga" "agc" "agg" "agt"
[13] "ata" "atc" "atg" "att" "caa" "cac" "cag" "cat" "cca" "ccc" "ccg" "cct"
[25] "cga" "cgc" "cgg" "cgt" "cta" "ctc" "ctg" "ctt" "gaa" "gac" "gag" "gat"
[37] "gca" "gcc" "gcg" "gct" "gga" "ggc" "ggg" "ggt" "gta" "gtc" "gtg" "gtt"
[49] "taa" "tac" "tag" "tat" "tca" "tcc" "tcg" "tct" "tga" "tgc" "tgg" "tgt"
[61] "tta" "ttc" "ttg" "ttt"

But since we are working with protein sequences here we name the coefficient
according to their amino acid :

names(EXP$KD) <- sapply(words(),function(x) translate(s2c(x)))

We just need one value per amino acid, we sort them in the lexical order,
and we reverse the scale so as to have positive values for hydrophilic proteins as
in [5] :

kdc <- EXP$KD[unique(names(EXP$KD))]
kdc <- -kdc[order(names(kdc))]
kdc

* A C D E F G H I K L M N P Q
0.0 -1.8 -2.5 3.5 3.5 -2.8 0.4 3.2 -4.5 3.9 -3.8 -1.9 3.5 1.6 3.5

R S T V W Y
4.5 0.8 0.7 -4.2 0.9 1.3

Now that we have the vector of coefficient αi, we need the amino acid relative
frequencies fi, let’s play with one protein first:

ath[[9523]]

[1] "MAGSQREKLKPRTKGSTRC*"

s2c(ath[[9523]])

[1] "M" "A" "G" "S" "Q" "R" "E" "K" "L" "K" "P" "R" "T" "K" "G" "S" "T" "R"
[19] "C" "*"

table(s2c(ath[[9523]]))

* A C E G K L M P Q R S T
1 1 1 1 2 3 1 1 1 1 3 2 2

table(factor(s2c(ath[[9523]]), levels = names(kdc)))

* A C D E F G H I K L M N P Q R S T V W Y
1 1 1 0 1 0 2 0 0 3 1 1 0 1 1 3 2 2 0 0 0

Now that we know how to count amino acids it’s relatively easy thanks to
R’s matrix operator %*% to define a vectorised function to compute a linear form
on amino acid frequencies:

linform <- function(data, coef){
f <- function(x){

aaseq <- s2c(x)
freq <- table(factor(aaseq, levels = names(coef)))/length(aaseq)
return(coef %*% freq)

}
res <- sapply(data, f)
names(res) <- NULL
return(res)
}
kdath <- linform(ath,kdc)

Let’s have a look at the distribution:

15

boxplot(kdath, horizontal = TRUE, col = grey(0.7),
main = "Distribution of Hydropathy index",
xlab = "Kyte and Doolittle GRAVY score")
abline(v = 1, col = "red")
legend("topleft",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

−1 0 1 2

Distribution of Hydropathy index

Kyte and Doolittle GRAVY score

Threshold for hydrophilines

The threshold is therefore much more stringent here than the previous one
on glycine content. Let’s define a vector of logicals to select the hydrophilines:

hydrophilines <- fgly > 0.08 & kdath > 1
head(names(ath)[hydrophilines])

[1] "At1g02840.1" "At1g02840.2" "At1g02840.3" "At1g03320.1" "At1g03820.1"
[6] "At1g04450.1"

Check with a simple graph that there is no mistake here:

library(MASS)
dst <- kde2d(kdath,fgly, n = 50)
filled.contour(x = dst, color.palette = topo.colors,
plot.axes = {

axis(1)
axis(2)
title(xlab="Kyte and Doolittle GRAVY score", ylab = "Glycine content",

main = "Hydrophilines location")
abline(v=1, col = "yellow")
abline(h=0.08, col = "yellow")
points(kdath[hydrophilines], fgly[hydrophilines], col = "white")
legend("topleft",inset=0.02,lty=1,col="yellow", bg="white", legend="Threshold for hydrophilines", cex = 0.8)
}

)

16

0

5

10

15

20

25

30

−1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

Hydrophilines location

Kyte and Doolittle GRAVY score

G
ly

ci
ne

 c
on

te
nt

Threshold for hydrophilines

Everything seems to be OK, we can save the results in a data frame:

data.frame(list("name"=names(ath),
"KD"=kdath, "Gly"=fgly)) -> athres
head(athres)

name KD Gly
At1g01010.1 At1g01010.1 0.7297674 0.05827506
At1g01020.1 At1g01020.1 -0.1674419 0.03906250
At1g01030.1 At1g01030.1 0.8136490 0.08100559
At1g01040.1 At1g01040.1 0.4159686 0.06705081
At1g01050.1 At1g01050.1 0.4460094 0.03773585
At1g01060.1 At1g01060.1 0.7444272 0.04186047

We want to check now that the results are consistent with those reported pre-
viously. The following table is extracted from the file pgen.0010026.st003.xls
provided as the supplementary material table S3 in [5] and available at http://
www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.

0010026.st003.xls. Only the protein names, the hydrophilicity and the glycine
content were extracted:

read.table(system.file("sequences/hannah.txt", package = "seqinr"), sep = "\t", header = TRUE)->hannah
head(hannah)

AGI Hydrophilicity Glycine
1 At2g19570 -0.10 0.07
2 At2g45290 -0.25 0.09
3 At4g29570 -0.05 0.07
4 At4g29580 -0.10 0.06
5 At4g29600 -0.14 0.06
6 At5g28050 -0.11 0.08

17

The protein names are not exactly the same because they have no extension.
As explained in [5], when multiple gene models were predicted only the first was
one used. Then:

hannah$AGI <- paste(hannah$AGI, "1", sep = ".")
head(hannah)

AGI Hydrophilicity Glycine
1 At2g19570.1 -0.10 0.07
2 At2g45290.1 -0.25 0.09
3 At4g29570.1 -0.05 0.07
4 At4g29580.1 -0.10 0.06
5 At4g29600.1 -0.14 0.06
6 At5g28050.1 -0.11 0.08

We join now the two data frames thanks to their common key:

join <- merge(hannah, athres, by.x = "AGI", by.y = "name")
head(join)

AGI Hydrophilicity Glycine KD Gly
1 At1g01120.1 -0.10 0.06 0.106994329 0.05871212
2 At1g01390.1 0.02 0.06 0.009147609 0.06458333
3 At1g01390.1 0.02 0.06 0.009147609 0.06458333
4 At1g01420.1 -0.05 0.07 0.062033195 0.07276507
5 At1g01420.1 -0.05 0.07 0.062033195 0.07276507
6 At1g01480.1 -0.20 0.07 0.200804829 0.06653226

Let’s compare the glycine content :

plot(join$Glycine, join$Gly, xlab = "Glycine content in Hannah et al. (2005)",
ylab = "Glycine content here", main = "Comparison of Glycine content results")
abline(c(0,1), col = "red")

0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Comparison of Glycine content results

Glycine content in Hannah et al. (2005)

G
ly

ci
ne

 c
on

te
nt

 h
er

e

18

The results are consistent, we have just lost some resolution because there
are only two figures after the decimal point in the Excel2 file. Let’s have a look
at the GRAVY score now:

plot(join$Hydrophilicity, join$KD, xlab = "GRAVY score in Hannah et al. (2005)",
ylab = "GRAVY score here", main = "Comparison of hydropathy score results", las = 1)
abline(c(0,-1), col = "red")
abline(v=0, lty=2)
abline(h=0, lty=2)

−1.0 −0.5 0.0 0.5

−0.5

0.0

0.5

1.0

Comparison of hydropathy score results

GRAVY score in Hannah et al. (2005)

G
R

A
V

Y
 s

co
re

 h
er

e

The results are consistent, it’s hard to say whether the small differences
are due to Excel rounding errors or because the method used to compute the
GRAVY score was not exactly the same (in [5] they used the mean over a sliding
window).

2this software is a real pain for the reproducibility of results. This is well documented,
see http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html and references
therein.

19

2 Importing aligned sequence data

2.1 Aligned sequences files examples

2.1.1 mase

Mase format is a flatfile format use by the SeaView multiple alignment editor
[3], developed by Manolo Gouy and available at http://pbil.univ-lyon1.

fr/software/seaview.html. The mase format is used to store nucleotide or
protein multiple alignments. The beginning of the file must contain a header
containing at least one line (but the content of this header may be empty). The
header lines must begin by ;;. The body of the file has the following structure:
First, each entry must begin by one (or more) commentary line. Commentary
lines begin by the character ;. Again, this commentary line may be empty. After
the commentaries, the name of the sequence is written on a separate line. At
last, the sequence itself is written on the following lines.

masef <- system.file("sequences/test.mase", package = "seqinr")
cat(readLines(masef), sep = "\n")

;;Aligned by clustal on Tue Jun 30 17:36:11 1998
;empty description
Langur
-KIFERCELARTLKKLGLDGYKGVSLANWVCLAKWESGYNTEATNYNPGDESTDYGIFQINSRYWCNNGKPGAVDACHISCSALLQNNIADAVACAKRVVSDQGIRAWVAWRNHCQNKDVSQYVKGCGV-
;
Baboon
-KIFERCELARTLKRLGLDGYRGISLANWVCLAKWESDYNTQATNYNPGDQSTDYGIFQINSHYWCNDGKPGAVNACHISCNALLQDNITDAVACAKRVVSDQGIRAWVAWRNHCQNRDVSQYVQGCGV-
;
Human
-KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQINSRYWCNDGKPGAVNACHLSCSALLQDNIADAVACAKRVVRDQGIRAWVAWRNRCQNRDVRQYVQGCGV-
;
Rat
-KTYERCEFARTLKRNGMSGYYGVSLADWVCLAQHESNYNTQARNYDPGDQSTDYGIFQINSRYWCNDGKPRAKNACGIPCSALLQDDITQAIQCAKRVVRDQGIRAWVAWQRHCKNRDLSGYIRNCGV-
;
Cow
-KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESSYNTKATNYNPSSESTDYGIFQINSKWWCNDGKPNAVDGCHVSCSELMENDIAKAVACAKKIVSEQGITAWVAWKSHCRDHDVSSYVEGCTL-
;
Horse
-KVFSKCELAHKLKAQEMDGFGGYSLANWVCMAEYESNFNTRAFNGKNANGSSDYGLFQLNNKWWCKDNKRSSSNACNIMCSKLLDENIDDDISCAKRVVRDKGMSAWKAWVKHCKDKDLSEYLASCNL-

A screenshot copy of the same file as seen under SeaView is given in figure
2.

2.1.2 clustal

The CLUSTAL format (*.aln) is the format of the ClustalW multialignment
tool output [6, 15]. It can be described as follows. The word CLUSTAL is on
the first line of the file. The alignment is displayed in blocks of a fixed length,
each line in the block corresponding to one sequence. Each line of each block
starts with the sequence name (maximum of 10 characters), followed by at least
one space character. The sequence is then displayed in upper or lower cases, ’-’
denotes gaps. The residue number may be displayed at the end of the first line
of each block.

clustalf <-system.file("sequences/test.aln", package = "seqinr")
cat(readLines(clustalf), sep = "\n")

20

Figure 2: The file test.mase under SeaView. This is a graphical multiple
sequence alignment editor developped by Manolo Gouy [3]. SeaView is able to
read and write various alignment formats (NEXUS, MSF, CLUSTAL, FASTA,
PHYLIP, MASE). It allows to manually edit the alignment, and also to run
DOT-PLOT or CLUSTALW programs to locally improve the alignment.

CLUSTAL W (1.82) multiple sequence alignment

FOSB_MOUSE MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60
FOSB_HUMAN MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60

**

FOSB_MOUSE ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPAVDPYDMPGTSYSTPGLSAYSTGGASGS 120
FOSB_HUMAN ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPVVDPYDMPGTSYSTPGMSGYSSGGASGS 120

********************************.***************:*.**:******

FOSB_MOUSE GGPSTSTTTSGPVSARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180
FOSB_HUMAN GGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180

****** ***** .**

FOSB_MOUSE DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240
FOSB_HUMAN DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240

**

FOSB_MOUSE LPGSTSAKEDGFGWLLPPPPPPPLPFQSSRDAPPNLTASLFTHSEVQVLGDPFPVVSPSY 300
FOSB_HUMAN LPGSAPAKEDGFSWLLPPPPPPPLPFQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSY 300

****:.******.**************:*:**************************.***

FOSB_MOUSE TSSFVLTCPEVSAFAGAQRTSGSEQPSDPLNSPSLLAL 338
FOSB_HUMAN TSSFVLTCPEVSAFAGAQRTSGSDQPSDPLNSPSLLAL 338

***********************:**************

2.1.3 phylip

PHYLIP is a tree construction program [1]. The format is as follows: the
number of sequences and their length (in characters) is on the first line of the
file. The alignment is displayed in an interleaved or sequential format. The
sequence names are limited to 10 characters and may contain blanks.

phylipf <- system.file("sequences/test.phylip", package = "seqinr")
cat(readLines(phylipf), sep = "\n")

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
Salmo gairAAGCCTTGGC AGTGCAGGGT
H. SapiensACCGGTTGGC CGTTCAGGGT
Chimp AAACCCTTGC CGTTACGCTT

21

Gorilla AAACCCTTGC CGGTACGCTT

GAGCCCGGGC AATACAGGGT AT
GAGCCGTGGC CGGGCACGGT AT
ACAGGTTGGC CGTTCAGGGT AA
AAACCGAGGC CGGGACACTC AT
AAACCATTGC CGGTACGCTT AA

2.1.4 msf

MSF is the multiple sequence alignment format of the GCG sequence analy-
sis package (http://www.accelrys.com/products/gcg/index.html). It be-
gins with the line (all uppercase) !!NA MULTIPLE ALIGNMENT 1.0 for nu-
cleic acid sequences or !!AA MULTIPLE ALIGNMENT 1.0 for amino acid se-
quences. Do not edit or delete the file type if its present (optional). A description
line which contains informative text describing what is in the file. You can add
this information to the top of the MSF file using a text editor (optional). A
dividing line which contains the number of bases or residues in the sequence,
when the file was created, and importantly, two dots (..) which act as a di-
vider between the descriptive information and the following sequence informa-
tion (required). msf files contain some other information: the Name/Weight, a
Separating Line which must include two slashes (//) to divide the name/weight
information from the sequence alignment (required) and the multiple sequence
alignment.

msff <- system.file("sequences/test.msf", package = "seqinr")
cat(readLines(msff), sep = "\n")

PileUp of: @Pi3k.Fil

Symbol comparison table: GenRunData:Pileuppep.Cmp CompCheck: 1254

GapWeight: 3.000
GapLengthWeight: 0.100

Pi3k.Msf MSF: 377 Type: P July 12, 1996 10:40 Check: 167 ..

Name: Tor1_Yeast Len: 377 Check: 7773 Weight: 1.00
Name: Tor2_Yeast Len: 377 Check: 8562 Weight: 1.00
Name: Frap_Human Len: 377 Check: 9129 Weight: 1.00
Name: Esr1_Yeast Len: 377 Check: 8114 Weight: 1.00
Name: Tel1_Yeast Len: 377 Check: 1564 Weight: 1.00
Name: Pi4k_Human Len: 377 Check: 8252 Weight: 1.00
Name: Stt4_Yeast Len: 377 Check: 9117 Weight: 1.00
Name: Pik1_Yeast Len: 377 Check: 3455 Weight: 1.00
Name: P3k1_Soybn Len: 377 Check: 4973 Weight: 1.00
Name: P3k2_Soybn Len: 377 Check: 4632 Weight: 1.00
Name: Pi3k_Arath Len: 377 Check: 3585 Weight: 1.00
Name: Vp34_Yeast Len: 377 Check: 5928 Weight: 1.00
Name: P11a_Human Len: 377 Check: 6597 Weight: 1.00
Name: P11b_Human Len: 377 Check: 8486 Weight: 1.00

//

1 50
Tor1_YeastGHE DIRQDSLVMQ LFGLVNTLLK NDSECFKRHL DIQQYPAIPL
Tor2_YeastGHE DIRQDSLVMQ LFGLVNTLLQ NDAECFRRHL DIQQYPAIPL
Frap_HumanGHE DLRQDERVMQ LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL
Esr1_YeastKKE DVRQDNQYMQ FATTMDFLLS KDIASRKRSL GINIYSVLSL
Tel1_Yeast .KALMKGSND DLRQDAIMEQ VFQQVNKVLQ NDKVLRNLDL GIRTYKVVPL
Pi4k_Human ..AAIFKVGD DCRQDMLALQ IIDLFKNIFQ LV....GLDL FVFPYRVVAT
Stt4_Yeast ..AAIFKVGD DCRQDVLALQ LISLFRTIWS SI....GLDV YVFPYRVTAT
Pik1_Yeast ...VIAKTGD DLRQEAFAYQ MIQAMANIWV KE....KVDV WVKRMKILIT
P3k1_Soybn TCKIIFKKGD DLRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT

22

P3k2_SoybnIFKKGD DIRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT
Pi3k_Arath ..KLIFKKGD DLRQDQLVVQ MVWLMDRLLK LE....NLDL CLTPYKVLAT
Vp34_Yeast .YHLMFKVGD DLRQDQLVVQ IISLMNELLK NE....NVDL KLTPYKILAT
P11a_Human ...IIFKNGD DLRQDMLTLQ IIRIMENIWQ NQ....GLDL RMLPYGCLSI
P11b_Human ...VIFKNGD DLRQDMLTLQ MLRLMDLLWK EA....GLDL RMLPYGCLAT

51 100
Tor1_Yeast SPKSGLLGWV PNSDTFHVLI REHRDAKKIP LNIEHWVMLQ MAPDYENLTL
Tor2_Yeast SPKSGLLGWV PNSDTFHVLI REHREAKKIP LNIEHWVMLQ MAPDYDNLTL
Frap_Human STNSGLIGWV PHCDTLHALI RDYREKKKIL LNIEHRIMLR MAPDYDHLTL
Esr1_Yeast REDCGILEMV PNVVTLRSIL STKYESLKIK Y.....SLKS LHDRWQHTAV
Tel1_Yeast GPKAGIIEFV ANSTSLHQIL SKLHTNDKIT FDQARKGMKA VQTKSN....
Pi4k_Human APGCGVIECI PDCTS..... RDQLGRQTDF GMYDYFTRQY
Stt4_Yeast APGCGVIDVL PNSVS..... RDMLGREAVN GLYEYFTSKF
Pik1_Yeast SANTGLVETI TNAMSVHSIK KALTKKMIED AELDDKGGIA SLNDHFLRAF
P3k1_Soybn GQDEGMLEFI P.SRSLAQI.LSENRSII SYLQ......
P3k2_Soybn GQDEGMLEFI P.SRSLAQI.LSENRSII SYLQ......
Pi3k_Arath GHDEGMLEFI P.SRSLAQI.LSEHRSIT SYLQ......
Vp34_Yeast GPQEGAIEFI P.NDTLASI.LSKYHGIL GYLK......
P11a_Human GDCVGLIEVV RNSHTIMQI.Q.CKGGLK GALQFNSHTL
P11b_Human GDRSGLIEVV STSETIADI.QLNSSNVA AAAAFNKDAL

2.1.5 FASTA

Sequence in fasta format begins with a single-line description (distinguished by
a greater-than (>) symbol), followed by sequence data on the next line.

fastaf <- system.file("sequences/Anouk.fasta", package = "seqinr")
cat(readLines(fastaf), sep = "\n")

>LmjF01.0030
ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGTGTGCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCAGAGGACTTCAACCGCTACGGCGTCGTAGAGGCGATGGACATTTTGCGGCTG
CGTGACGCCATCGAGTACATCAAGGCTAATCCGCTCCCCGCCTCGCGCTCTGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGGCGGCAGTACACAGCACGCGGAACCACAGTCCTTTGCCGGTCG
ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCCTCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAGC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCCTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGACAGACAGGGAGCGGCAAGACACACACGATGCTGGGCAAGGGCCCCGAGCCGGGC
CTCTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTC
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCC
CTGCGAGCCCTCGAGGACGACAAGGGCCGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGTGTTCGCAGCTGC
GGCTCCACCGGCGCCAATGACACAAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACGTTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCTGACACGGTGGACTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATC
AACAAGAGCCTACTCGCGCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCGAACAACAATGCCGAGCACACGCTGAAC
ACGCTGCGCTACGCCGATCGTGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACT
GTGTGCATGCCCGACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGCCTTTCTACGGCCGCCCCGCTTTTCTCCGGCTCTTCGACG
GCTGCGCCAGCACTTAGAAGCACGCTACTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGCCAAGTCGACTCTCGTCACCCCGAAGCCGCCGTCGCGCGATCGGACTCCG
GACATGGTGTGCACTAAGCGGCCCCGCGACTCAGACAGAAGCGGCGAGGACGAAGTGGTA
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGAGCGGCGCCGAGCTTGTCGCG
GCCCAGCGCAGTCGCGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCAGC
TTTGTGGAGCGCGCACGTCTGCTGGTGAGCGAGAAACGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGAGGAGCTCGACAAGATCGCGCAGCAGGTCGCCGACATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG
>LinJ01.0030
ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGAGTTCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCGGAGGACTTCAACCGCTACGGCGTCGTAGAGGCAATGGACATTTTGCGGCTG
CGCGACGCCATCGAGTACATCAAGGCCAACCCGCTCCCCGCCTCGCGCTCCGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGACGGCAGTACACAGCACGCGGAACCACCGTCCTTTGCGGGTCG

23

ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCATCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAAC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCGTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGGCAGACAGGGAGCGGCAAGACACACACGATGCTCGGCAAGGGCCCCGAGCCGGGC
CTGTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTT
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCA
CTGCGAGCCCTCGAGGACGACAAGGGGAGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGCGTTCGCAGCTGC
GGCTCCACCGGCGCCAACGACACGAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACATTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCCGACACGGTGGATTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATT
AACAAGAGCCTACTCGCTCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCCAACAACAATGCCGAGCACACGCTGAAC
ACGTTGCGCTACGCCGATCGCGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACC
GTGTGCGTGCCCAACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGGCTTTCTGCGGCCGCCCCGCTTTTCTCCGGCACTTCGACG
GCTGCCCCAGCATGTAAAAGCACGTTGCTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGGCAAGTCGACTCTCGTCACCCCGAAGCCACTGTCGCGCGATCGGACTCCG
GACATGGTGTGCGCTAAGCGGCCCCGCGACTCAGACCGAAGCGGCGAAGACGAAGTGGTG
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGGGCGGCGCCGAGCTCGTGGCG
GCCCAGCGCAGTCGTGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCACC
TTTGTCGAGCGCGCACGCCTGCTGGTGAGCGAGAAGCGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGACGAGCTCGATAAGATCGCGCAGCAGGTCGCCAGCATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG

2.2 The function read.alignment()

Aligned sequence data are very important in evolutionary studies, in this rep-
resentation all vertically aligned positions are supposed to be homologous, that
is sharing a common ancestor. This is a mandatory starting point for compar-
ative studies. There is a function in seqinR called read.alignment() to read
aligned sequences data from various formats (mase, clustal, phylip, fasta or
msf) produced by common external programs for multiple sequence alignment.

example(read.alignment)

rd.lgn mase.res <- read.alignment(file = system.file("sequences/test.mase", package = "seqinr"),
rd.lgn format = "mase")

rd.lgn clustal.res <- read.alignment(file = system.file("sequences/test.aln", package = "seqinr"),
rd.lgn format="clustal")

rd.lgn phylip.res <- read.alignment(file = system.file("sequences/test.phylip", package = "seqinr"),
rd.lgn format = "phylip")

rd.lgn msf.res <- read.alignment(file = system.file("sequences/test.msf", package = "seqinr"),
rd.lgn format = "msf")

rd.lgn fasta.res <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
rd.lgn format = "fasta")

rd.lgn #
rd.lgn # Quality control routine sanity checks:
rd.lgn #
rd.lgn
rd.lgn data(mase); stopifnot(identical(mase, mase.res))

rd.lgn data(clustal); stopifnot(identical(clustal, clustal.res))

rd.lgn data(phylip); stopifnot(identical(phylip, phylip.res))

rd.lgn data(msf); stopifnot(identical(msf, msf.res))

rd.lgn data(fasta); stopifnot(identical(fasta, fasta.res))

24

2.3 A simple example with the louse-gopher data

Let’s give an example. The gene coding for the mitochondrial cytochrome ox-
idase I is essential and therefore often used in phylogenetic studies because of
its ubiquitous nature. The following two sample tests of aligned sequences of
this gene (extracted from ParaFit [10]), are distributed along with the seqinR
package:

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")
louse$nam

[1] "gi|548117|gb|L32667.1|GYDCYTOXIB Geomydoecus chapini mitochondrial cytochrome oxidase I gene, partial cds"
[2] "gi|548119|gb|L32668.1|GYDCYTOXIC Geomydoecus cherriei mitochondrial cytochrome oxidase I gene, partial cds"
[3] "gi|548121|gb|L32669.1|GYDCYTOXID Geomydoecus costaricensis mitochondrial cytochrome oxidase I gene, partial cds"
[4] "gi|548125|gb|L32671.1|GYDCYTOXIF Geomydoecus ewingi mitochondrial cytochrome oxidase I gene, partial cds"
[5] "gi|548127|gb|L32672.1|GYDCYTOXIG Geomydoecus geomydis mitochondrial cytochrome oxidase I gene, partial cds"
[6] "gi|548131|gb|L32675.1|GYDCYTOXII Geomydoecus oklahomensis mitochondrial cytochrome oxidase I gene, partial cds"
[7] "gi|548133|gb|L32676.1|GYDCYTOXIJ Geomydoecus panamensis mitochondrial cytochrome oxidase I gene, partial cds"
[8] "gi|548137|gb|L32678.1|GYDCYTOXIL Geomydoecus setzeri mitochondrial cytochrome oxidase I gene, partial cds"

gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")
gopher$nam

[1] "gi|548223|gb|L32683.1|PPGCYTOXIA Geomys breviceps mitochondrial cytochrome oxidase I gene, partial cds"
[2] "gi|548197|gb|L32686.1|OGOCYTOXIA Orthogeomys cavator mitochondrial cytochrome oxidase I gene, partial cds"
[3] "gi|548199|gb|L32687.1|OGOCYTOXIB Orthogeomys cherriei mitochondrial cytochrome oxidase I gene, partial cds"
[4] "gi|548201|gb|L32691.1|OGOCYTOXIC Orthogeomys underwoodi mitochondrial cytochrome oxidase I gene, partial cds"
[5] "gi|548203|gb|L32692.1|OGOCYTOXID Orthogeomys hispidus mitochondrial cytochrome oxidase I gene, partial cds"
[6] "gi|548229|gb|L32693.1|PPGCYTOXID Geomys bursarius mitochondrial cytochrome oxidase I gene, partial cds"
[7] "gi|548231|gb|L32694.1|PPGCYTOXIE Geomys bursarius mitochondrial cytochrome oxidase I gene, partial cds"
[8] "gi|548205|gb|L32696.1|OGOCYTOXIE Orthogeomys heterodus mitochondrial cytochrome oxidase I gene, partial cds"

Figure 3: Louse (left) and gopher (right). Images are from the wikipedia (http:
//www.wikipedia.org/). The picture of the chewing louse Damalinia limbata
found on Angora goats was taken by Fiorella Carnevali (ENEA, Italy). The
gopher drawing is from Gustav Mützel, Brehms Tierleben, Small Edition 1927.

The aligned sequences are now imported in your environment. The 8
genes of the first sample are from various species of louse (insects parasitics on
warm-blooded animals) and the 8 genes of the second sample are from their
corresponding gopher hosts (a subset of rodents), see figure 3 :

25

l.names <- readLines(system.file("sequences/louse.names", package = "seqinr"))
l.names

[1] "G.chapini " "G.cherriei " "G.costaric " "G.ewingi " "G.geomydis "
[6] "G.oklahome " "G.panamens " "G.setzeri "

g.names <- readLines(system.file("sequences/gopher.names", package = "seqinr"))
g.names

[1] "G.brevicep " "O.cavator " "O.cherriei " "O.underwoo " "O.hispidus "
[6] "G.burs1 " "G.burs2 " "O.heterodu"

SeqinR has very few methods devoted to phylogenetic analyses but many
are available in the ape package [12]. This allows for a very fine tuning of the
graphical outputs of the analyses thanks to the power of the facilities. For
instance, a natural question here would be to compare the topology of the tree
of the hosts and their parasites to see if we have congruence between host and
parasite evolution. In other words, we want to display two phylogenetic trees
face to face. This would be tedious with a program devoted to the display of a
single phylogenetic tree at time, involving a lot of manual copy/paste operations,
hard to reproduce, and then boring to maintain with data updates.

How does it looks under ? First, we need to infer the tree topologies
from data. Let’s try as an illustration the famous neighbor-joining tree estima-
tion of Saitou and Nei [14] with Jukes and Cantor’s correction [7] for multiple
substitutions.

library(ape)
louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")
gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")
l <- nj(louse.JC)
g <- nj(gopher.JC)

Now we have an estimation for illustrative purposes of the tree topology for
the parasite and their hosts. We want to plot the two trees face to face, and for
this we must change R graphical parameters. The first thing to do is to save
the current graphical parameter settings so as to be able to restore them later:

op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical pa-
rameters are not all settable, we just want to save those we can change at will.
Now, we can play with graphics :

g$tip.label <- paste(1:8, g.names)
l$tip.label <- paste(1:8, l.names)
layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))
par(mar=c(2,1,2,1))
plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)
plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

26

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)

1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

We now restore the old graphical settings that were previously saved:

par(op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd() command, create a text file called
essai.r with your favourite text editor, and copy/paste the previous com-
mands, that is :

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")

gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")

l.names <- readLines(system.file("sequences/louse.names", package = "seqinr"))

g.names <- readLines(system.file("sequences/gopher.names", package = "seqinr"))

library(ape)

louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")

gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")

l <- nj(louse.JC)

g <- nj(gopher.JC)

g$tip.label <- paste(1:8, g.names)

l$tip.label <- paste(1:8, l.names)

layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))

par(mar=c(2,1,2,1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)

plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to console to
enter the command :

source("essai.r")

This should reproduce the previous face-to-face phylogenetic trees in your
graphical device. Now, your boss is unhappy with working with the Jukes and

Cantor’s model [7] and wants you to use the Kimura’s 2-parameters distance
[8] instead. Go back to the text editor to change model = "JC69" by model

= "K80", save the file, and in the console source("essai.r") again, you
should obtain the following graph :

27

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)
1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

Now, something even worst, there was a error in the aligned sequence set:
the first base in the first sequence in the file louse.fasta is not a C but a T.
To locate the file on your system, enter the following command:

system.file("sequences/louse.fasta", package = "seqinr")

[1] "/Users/lobry/seqinr/pkg.Rcheck/seqinr/sequences/louse.fasta"

Open the louse.fasta file in your text editor, fix the error, go back to
the console to source("essai.r") again. That’s all, your graph is now
consistent with the updated dataset.

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Thu Jun 2 15:58:57 2016

• LATEX compilation time was: June 2, 2016

28

References

[1] J. Felsenstein. PHYLIP-phylogeny inference package (version 3.2). Cladis-
tics, 5:164–166, 1989.

[2] A.C. Frank and J.R. Lobry. Oriloc: prediction of replication boundaries in
unannotated bacterial chromosomes. Bioinformatics, 16(6):560–561, 2000.

[3] N. Galtier, M. Gouy, and C. Gautier. SeaView and Phylo win, two graphic
tools for sequence alignment and molecular phylogeny. Comput. Applic.
Biosci., 12:543–548, 1996.

[4] A. Garay-Arroyo, J.M. Colmenero-Flores, A. Garciarrubio, and A.A. Co-
varrubias. Highly hydrophilic proteins in prokaryotes and eukaryotes are
common during conditions of water deficit. J. Biol. Chem., 275:5668–5674,
2000.

[5] M.A. Hannah, A.G. Heyer, and D.K. Hincha. A global survey of gene
regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet.,
1:e26, 2005.

[6] D. G. Higgins and P. M. Sharp. CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene, 73:237–244, 1988.

[7] T.H. Jukes and C.R. Cantor. Evolution of protein molecules. In H.N.
Munro, editor, Mammalian Protein Metabolism, pages 21–132, New York,
1969. Academic Press.

[8] M. Kimura. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J. Mol.
Evol., 16:111–120, 1980.

[9] J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157:105–132, 1982.

[10] P. Legendre, Y. Desdevises, and E. Bazin. A statistical test for host-parasite
coevolution. Syst. Biol., 51:217–234, 2002.

[11] P. Mackiewicz, J. Zakrzewska-Czerwińska, A. Zawilak, M.R. Dudek, and
S. Cebrat. Where does bacterial replication start? rules for predicting the
oriC region. Nucleic Acids Research, 32:3781–3791, 2004.

[12] E. Paradis, J. Claude, and K. Strimmer. Ape: analyses of phylogenetics
and evolution in R language. Bioinformatics, 20:289–290, 2004.

[13] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences of the United
States of America, 85:2444–2448, 1988.

29

[14] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406–
425, 1984.

[15] I.M. Wallace, G. Blackshields, and D.G. Higgins. Multiple sequence align-
ments. Curr. Opin. Struct. Biol., 15:261–266, 2005.

30

