
SeqinR 3.1−5

2

Figure 1: The march of progress icon is very common in popular press. This
example is from page 46 of a 1984 summer issue of the tchek edition of Playboy.

The march of progress icon

The cover, an artwork created1 by Lionel Humblot, is an allusion to what
Stephen J. Gould considered as a caonical icon of ”[t]he most serious and perva-
sive of all misconceptions about evolution equates the concept with some notion
of progress, usually inherent and predictable, and leading to a human pinnacle”
[26]. Some examples of the so-called ”march of progress icon” out of hundreds
in S.J. Gould’s collection from popular press are given in the begining of his
famous book Wonderful life [25].

Note that the underlying conception predates Darwin [61]. We know now
that evolution doesn not equal progress, and this is illutrated here in the cover
by the unusual decreasing size from the initial character (on the left) to the
last one (on the right).

The character on the left

The character on the left is called Casimir, the cult character of the french
TV show l’̂ıle aux enfants (literally Kid’s island, a french adaptation of Sesame

L’̂ıle aux enfants. Street from 1974 to 1975 and then an autonomous production until 1982 when it
eventually ended). Casimir was a muppet, human-sized, with an actor playing
inside, representing an orange dinosaur (the exact taxonomy has never been
published) with yellow and red spots. Casimir was symbolically chosen here for
two reasons. Fisrt, it’s birth correspond to one of the earliest paper from our

1 with Canvas from ACD Systems.

3

lab about molecular evolution [31]. If you dig into seqinR you will find that
the data from this more than 30 years old paper are still available2:

data(aaindex)
grth <- which(sapply(aaindex, function(x) length(grep("Grantham", x$A)) != 0))
lapply(aaindex[grth],"[[","D")

$GRAR740101
[1] "Composition (Grantham, 1974)"

$GRAR740102
[1] "Polarity (Grantham, 1974)"

$GRAR740103
[1] "Volume (Grantham, 1974)"

Second, Casimir’s life span correspond more or less to the time during which
the sequence analysis software called ANALSEQ3 [38] was under development
in our lab. ANALSEQ has never been published as a regular paper (although
it is mentioned in one of the ACNUC paper [30]), there is only a reference man-
ual in french [38] also available on-line at http://biomserv.univ-lyon1.fr/

doclogi/docanals/manuel.html. ANALSEQ was entirely written in FORTRAN-
77, and although you won’t find any fossil code from it within seqinR, we
wanted to credit symbolically ANALSEQ as a kind of spiritual ancestor of se-
qinR with the cover.

The character on the right

The character on the right is called Kirikou. He is the main character of the an-
Kirikou and the sorceress, a film
by Michel Ocelot with original
music by Youssou N’Dour.

imated film Kirikou et la sorcière (Kirikou and the sorceress, 1998) and Kirikou
et les bêtes sauvages (Kirikou and the Wild Beasts, 2005). Kirikou was chosen
as a symbol of seqinR development time. SeqinR started in september 2002
as part of the work of Delphine Charif’s master of sciences. The first public pre-
sentation of seqinR was a seminar (2-JUL-2003, Lausanne University, Swiss)
and the first public release on the CRAN4 was in october 2004.

Technical details

The cover was saved from Canvas into an EPS5 file. This file was then manually
edited to remove non-ASCII characters. It was then converted into RGML6

format with the following code based on grid [78], XML [16] and grImport

[64]:

library(grid)
library(XML)
library(grImport)
PostScriptTrace("../figs/couverture.eps", "../figs/couverture.rgml")

The picture was then edited to add automatically the current seqinR release
number:

2 thanks to aaindex database [43, 95, 65].
3 not to be confused with the ANALYSEQ program by Rodger Staden [91].
4 Comprehensive R Archive Network.
5 Encapsulated Postscrit.
6 RDF (Resource Description Framework) Graph Modeling Language (http://www.cs.

rpi.edu/~puninj/RGML/).

http://biomserv.univ-lyon1.fr/doclogi/docanals/manuel.html
http://biomserv.univ-lyon1.fr/doclogi/docanals/manuel.html
http://www.cs.rpi.edu/~puninj/RGML/
http://www.cs.rpi.edu/~puninj/RGML/

4

cover <- readPicture("../figs/couverture.rgml")
pdf(file="../figs/cover.pdf", width = 21/2.54, height =29.7/2.54)
pushViewport(plotViewport(margins = c(0, 0, 0, 0)))
grid.picture(cover)
grid.text(paste("SeqinR", packageDescription("seqinr")$Version), gp = gpar(cex = 5),
y = unit(0.72, "npc"))
popViewport()
dev.off()

And finally inserted at the begining of the LATEX file with:

\atxy(0cm,0cm){

\includegraphics[width=\paperwidth,height=\paperheight]{../figs/cover}

}

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Thu Jun 2 18:24:36 2016

• LATEX compilation time was: June 2, 2016

SeqinR 3.1-5: a contributed package to the

project for statistical computing devoted to

biological sequences retrieval and analysis

Charif, D. Humblot, L. Lobry, J.R. Necşulea, A.
Palmeira, L. Penel, S.

June 2, 2016

2

CONTENTS

I Frontmatter 7

1 Licence of this document 9

II Mainmatter 11

2 Introduction 13
2.1 About ACNUC . 13
2.2 About R and CRAN . 14
2.3 About this document . 15
2.4 About sequin and seqinR . 15
2.5 About getting started . 15
2.6 About running R in batch mode 15
2.7 About the learning curve . 16

2.7.1 Wheel (the) . 16
2.7.2 Hotline . 16
2.7.3 Automation . 16
2.7.4 Reproducibility . 17
2.7.5 Fine tuning . 17
2.7.6 Data as fast moving targets 19
2.7.7 Sweave() and xtable() 21

3 Importing sequences from flat files 23
3.1 Importing raw sequence data from FASTA files 23

3.1.1 FASTA files examples . 23
3.1.2 The function read.fasta() 24
3.1.3 The function write.fasta() 27
3.1.4 Big room examples . 28

3.2 Importing aligned sequence data 40
3.2.1 Aligned sequences files examples 40
3.2.2 The function read.alignment() 44
3.2.3 A simple example with the louse-gopher data 45

3

4 CONTENTS

4 Importing sequences from ACNUC databases 49
4.1 Choose a bank . 49
4.2 Make your query . 52
4.3 Extract sequences of interest . 56

4.3.1 Introduction . 56
4.3.2 Extracting sequences with trans-splicing 57
4.3.3 Extracting sequences from many entries 58

5 The query language 61
5.1 Where to find information . 61
5.2 Case sensitivity and ambiguities resolution 61
5.3 Selection criteria . 62

5.3.1 Introduction . 62
5.3.2 SP=taxon . 62
5.3.3 TID=id . 62
5.3.4 K=keyword . 63
5.3.5 T=type . 63
5.3.6 J=journal_name . 63
5.3.7 R=refcode . 64
5.3.8 AU=name . 64
5.3.9 AC=accession_no . 64
5.3.10 N=seq_name . 65
5.3.11 NS=taxon_name . 66
5.3.12 NK=keyword_name . 66
5.3.13 Y=year or Y>year or Y<year 66
5.3.14 O=organelle . 67
5.3.15 M=molecule . 67
5.3.16 ST=status . 68
5.3.17 F=file_name . 68
5.3.18 FA=file_name . 69
5.3.19 FK=file_name . 69
5.3.20 FS=file_name . 70
5.3.21 list_name . 70

5.4 Operators . 71
5.4.1 AND . 71
5.4.2 OR . 71
5.4.3 NOT . 71
5.4.4 PAR . 72
5.4.5 SUB . 72
5.4.6 PS . 72
5.4.7 PK . 72
5.4.8 UN . 73
5.4.9 SD . 73
5.4.10 KD . 73

6 How to deal with sequences 75
6.1 Sequence classes . 75
6.2 Generic methods for sequences 75

6.2.1 From classes to methods 76
6.2.2 From methods to classes 76

CONTENTS 5

6.3 Internal representation of sequences 77

6.3.1 Sequences as vectors of characters 77

7 Multivariate analyses 83

7.1 Correspondence analysis . 83

7.2 Synonymous and non-synonymous analyses 92

8 Nonparametric statistics 105

8.1 Introduction . 105

8.2 Elementary nonparametric statistics 105

8.2.1 Introduction . 105

8.2.2 Rank sum . 107

8.2.3 Rank variance . 109

8.2.4 Clustering around the observed centre 110

8.2.5 Number of runs . 111

8.2.6 Multiple clusters . 112

8.3 Dinucleotides over- and under-representation 113

8.3.1 Introduction . 113

8.3.2 The rho statistic . 113

8.3.3 The z-score statistic . 115

8.3.4 Comparing statistics on a sequence 115

8.4 UV exposure and dinucleotide content 118

8.4.1 The expected impact of UV light on genomic content . . 118

8.4.2 The measured impact of UV light on genomic content . . 122

III Appendix 129

9 FAQ: Frequently Asked Questions 131

9.1 How can I compute a score over a moving window? 131

9.2 How can I extract just a fragment from my sequence? 133

9.3 How do I compute a score on my sequences? 134

9.4 Why do I have not exactly the same G+C content as in codonW? 135

9.5 How do I get a sequence from its name? 140

10 GNU Free Documentation License 143

10.1 APPLICABILITY AND DEFINITIONS 143

10.2 VERBATIM COPYING . 145

10.3 COPYING IN QUANTITY . 145

10.4 MODIFICATIONS . 146

10.5 COMBINING DOCUMENTS . 148

10.6 COLLECTIONS OF DOCUMENTS 148

10.7 AGGREGATION WITH INDEPENDENT WORKS 148

10.8 TRANSLATION . 149

10.9 TERMINATION . 149

10.10FUTURE REVISIONS OF THIS LICENSE 149

11 Release notes 151

6 CONTENTS

12 Genetic codes 169
12.1 Standard genetic code . 169
12.2 Available genetic code numbers 169

Bibliography 180

Part I

Frontmatter

7

CHAPTER 1

Licence of this document

Licence

Copyright © 2003-2014 J.R. Lobry. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU Free
Documentation License”, that is in appendix 10 page 143.

Using and contributing

If you want to re-use or contribute to this document, some indications are given
in template.pdf file located in the www/src/template/ folder. All the code
source is available in a svn repository hosted by R-forge at https://r-forge.
r-project.org/scm/viewvc.php/?root=seqinr.

9

https://r-forge.r-project.org/scm/viewvc.php/?root=seqinr
https://r-forge.r-project.org/scm/viewvc.php/?root=seqinr

10 CHAPTER 1. LICENCE OF THIS DOCUMENT

Part II

Mainmatter

11

CHAPTER 2

Introduction

Lobry, J.R.

2.1 About ACNUC
Cover of ACNUC book vol. 1

Cover of ACNUC book vol. 2

ACNUC1 was first a database of nucleic acids developed in the early 80’s in the
same lab (Lyon, France) that issued seqinR. ACNUC was first published as
a printed book in two volumes [22, 23] whose covers are reproduced in margin
there. At about the same time, two other databases were created, one in the
USA (GenBank, at Los Alamos and now managed by the NCBI2), and another
one in Germany (created in Köln by K. Stüber). To avoid duplication of efforts
at the european level, a single repository database was initiated in Germany
yielding the EMBL3 database that moved from Köln to Heidelberg, and then to
its current location at the EBI4 near Cambridge. The DDBJ5 started in 1986
at the NIG6 in Mishima. These three main repository DNA databases are now
collaborating to maintain the INSD7 and are sharing data on a daily basis.

The sequences present in the ACNUC books [22, 23] were all the published
nucleic acid sequences of about 150 or more continuous unambiguous nucleotides
up to May or June 1981 from the journal given in table 2.1.

The total number of base pair was 526,506 in the two books. They were
about 4.5 cm width. We can then compute of much place would it take to print
the last GenBank release with the same format as the ACNUC book:

ACNUC books are about 4.5 cm width

acnucbooksize <- 4.5 # cm
acnucbp <- 526506 # bp
choosebank("genbank") -> mybank

1 A contraction of ACides NUCléiques, that is NUCleic ACids in french (http://pbil.
univ-lyon1.fr/databases/acnuc/acnuc.html)

2National Center for Biotechnology Information
3European Molecular Biology Laboratory
4European Bioinformatic Institute
5DNA Data Bank of Japan
6National Institute of Genetics
7 International Nucleotide Sequence Database (http://www.insdc.org/)

13

http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html
http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html
http://www.insdc.org/

14 CHAPTER 2. INTRODUCTION

Journal name
Biochimie
Biochemistry (ACS)
Cell
Comptes Rendus de l’Académie des Sciences, Paris
European Journal of Biochemistry
FEBS Letters
Gene
Journal of Bacteriology
Journal of Biological Chemistry
Journal of Molecular Biology
Molecular and General Genetics
Nature
Nucleic Acids Research
Proceedings of the National Academy of Sciences of the United States of America
Science

Table 2.1: The list of journals that were manually scanned for nucleic sequences
that were included in the ACNUC books [22, 23]

closebank()
mybank$details

[1] " **** ACNUC Data Base Content **** "
[2] " GenBank Release 213 (15 April 2016) Last Updated: May 22, 2016"
[3] "212,493,047,396 bases; 194,219,757 sequences; 31,530,545 subseqs; 876,736 refers."
[4] "Software M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I "

unlist(strsplit(mybank$details[3], split=" "))[1] -> bpbk
bpbk

[1] "212,493,047,396"

bpbk <- as.numeric(paste(unlist(strsplit(bpbk, split = ",")), collapse = ""))
widthcm <- acnucbooksize*bpbk/acnucbp
(widthkm <- widthcm/10^5)

[1] 18.16159

It would be about 18.2 kilometer long in ACNUC book format to print Gen-
Bank today (June 2, 2016). As a matter of comparison, our local universitary
library buiding8 contains about 4 km of books and journals.

Our local library building in 2007 has
a capacity of about 4 linear km of jour-
nals. That wouldn’t be enough to store
a printed version of GenBank. Picture
by Lionel Clouzeau.

2.2 About R and CRAN

[37, 77] is a libre language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques:
linear and nonlinear modelling, statistical tests, time series analysis, classifica-
tion, clustering, etc. Please consult the project homepage at http://www.R-project.org/
for further information.

The Comprehensive Archive Network, CRAN, is a network of servers
around the world that store identical, up-to-date, versions of code and documen-
tation for R. At compilation time of this document, there were 95 mirrors avail-
able from 50 countries. Please use the CRAN mirror nearest to you to minimize
network load, they are listed at http://cran.r-project.org/mirrors.html,
and can be directly selected with the function chooseCRANmirror().

8Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; Bibliothèque Universitaire Sci-
ences, 18-25-27 Avenue Claude BERNARD, F-69622, Villeurbanne, France.

2.3. ABOUT THIS DOCUMENT 15

2.3 About this document

In the terminology of the project [37, 77], this document is a package vi-
gnette, which means that all code outputs present here were actually obtained
by runing them. The examples given thereafter were run under R version

3.2.4 (2016-03-10) on Tue May 31 18:00:24 2016 with Sweave [51]. There
is a section at the end of each chapter called Session Informations that
gives details about packages and package versions that were involved9. The
last compiled version of this document is available at the seqinR home page at
http://seqinr.r-forge.r-project.org/.

2.4 About sequin and seqinR

Sequin is the well known sofware used to submit sequences to GenBank, seqinR
[9] has definitively no connection with sequin. seqinR is just a shortcut, with
no google hit, for ”Sequences in R”.

However, as a mnemotechnic tip, you may think about the seqinR package
as the Reciprocal function of sequin: with sequin you can submit sequences to
Genbank, with seqinR you can Retrieve sequences from Genbank (and many
other sequence databases). This is a very good summary of a major functionality
of the seqinR package: to provide an efficient access to sequence databases
under R.

2.5 About getting started

You need a computer connected to the Internet. First, install on your com-
puter. There are distributions for Linux, Mac and Windows users on the CRAN
(http://cran.r-project.org). Then, install the ape, ade4 and seqinr pack-
ages. This can be done directly in an console with for instance the command
install.packages("seqinr"). Last, load the seqinR package with:

library(seqinr)

The command lseqinr() lists all what is defined in the package seqinR:

lseqinr()[1:9]

[1] "a" "aaa" "aacost" "aaindex"
[5] "AAstat" "acnucclose" "acnucopen" "al2bp"
[9] "alllistranks"

We have printed here only the first 9 entries because they are too numerous.
To get help on a specific function, say aaa(), just prefix its name with a question
mark, as in ?aaa and press enter.

2.6 About running R in batch mode

Although is usually run in an interactive mode, some data pre-processing
and analyses could be too long. You can run your code in batch mode in a
shell with a command that typically looks like :

9 Previous versions of and packages are available on CRAN mirrors, for instance at
http://cran.univ-lyon1.fr/src/contrib/Archive.

http://seqinr.r-forge.r-project.org/.
http://cran.univ-lyon1.fr/src/contrib/Archive

16 CHAPTER 2. INTRODUCTION

unix$ R CMD BATCH input.R results.out &

where input.R is a text file with the code you want to run and results.out

a text file to store the outputs. Note that in batch mode, the graphical user
interface is not active so that some graphical devices (e.g. x11, jpeg, png) are
not available (see the R FAQ [35] for further details).

It’s worth noting that uses the XDR representation of binary objects in
binary saved files, and these are portable across all platforms. The save()

and load() functions are very efficient (because of their binary nature) for
saving and restoring any kind of objects, in a platform independent way. To
give a striking real example, at a given time on a given platform, it was about
4 minutes long to import a numeric table with 70000 lines and 64 columns
with the defaults settings of the read.table() function. Turning it into binary
format, it was then about 8 seconds to restore it with the load() function. It is
therefore advisable in the input.R batch file to save important data or results
(with something like save(mybigdata, file = "mybigdata.RData")) so as to
be able to restore them later efficiently in the interactive mode (with something
like load("mybigdata.RData")).

2.7 About the learning curve

Introduction

If you are used to work with a purely graphical user interface, you may feel
frustrated in the beginning of the learning process because apparently simple
things are not so easily obtained (ce n’est que le premier pas qui coûte !). In
the long term, however, you are a winner for the following reasons.

2.7.1 Wheel (the)

Do not re-invent (there’s a patent [44] on it anyway). At the compilation time
of this document there were 8463 contributed packages available. Even if you
don’t want to be spoon-feed à bouche ouverte, it’s not a bad idea to look around
there just to check what’s going on in your own application field. Specialists all
around the world are there.

2.7.2 Hotline

There is a very reactive discussion list to help you, just make sure to read the
posting guide there: http://www.R-project.org/posting-guide.html before
posting. Because of the high traffic on this list, we strongly suggest to answer yes
at the question Would you like to receive list mail batched in a daily digest? when
subscribing at https://stat.ethz.ch/mailman/listinfo/r-help. Some bons
mots from the list are archived in the fortunes package.

2.7.3 Automation

Consider the 178 pages of figures in the additional data file 1 (http://genomebiology.
com/2002/3/10/research/0058/suppl/S1) from [60]. They were produced in
part automatically (with a proprietary software that is no more maintained)

http://www.R-project.org/posting-guide.html
https://stat.ethz.ch/mailman/listinfo/r-help
http://genomebiology.com/2002/3/10/research/0058/suppl/S1
http://genomebiology.com/2002/3/10/research/0058/suppl/S1

2.7. ABOUT THE LEARNING CURVE 17

and manually, involving a lot of tedious and repetitive manipulations (such as
italicising species names by hand in subtitles). In few words, a waste of time.
The advantage of the environment is that once you are happy with the out-
puts (including graphical outputs) of an analysis for species x, it’s very easy to
run the same analysis on n species.

2.7.4 Reproducibility

If you do not consider the reproducibility of scientific results to be a serious
problem in practice, then the paper by Jonathan Buckheit and David Donoho
[7] is a must read. Molecular data are available in public databases, this is a
necessary but not sufficient condition to allow for the reproducibility of results.
Publishing the source code that was used in your analyses is a simple way to
greatly facilitate the reproduction of your results at the expense of no extra cost.
At the expense of a little extra cost, you may consider to set up a RWeb server
so that even the laziest reviewer may reproduce your results just by clicking on
the ”do it again” button in his web browser (i.e. without installing any soft-
ware on his computer). For an example involving the seqinR pacakage, follow
this link http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/ to
reproduce on-line the results from [10].

2.7.5 Fine tuning

You have full control on everything, even the source code for all functions is
available. The following graph was specifically designed to illustrate the first
experimental evidence [81] that, on average, we have also [A]=[T] and [C]=[G] in
single-stranded DNA. These data from Chargaff’s lab give the base composition
of the L (Ligth) strand for 7 bacterial chromosomes.

example(chargaff, ask = FALSE)

[A]

 0 % − 100 %

[G]

 0 % − 100 %

[C]

 0 % − 100 %

[T]

 0 % − 100 %

This is a very specialised graph. The filled areas correspond to non-allowed
values beause the sum of the four bases frequencies cannot exceed 100%. The
white areas correspond to possible values (more exactly to the projection from
R4 to the corresponding R2 planes of the region of allowed values). The lines
correspond to the very small subset of allowed values for which we have in

http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/

18 CHAPTER 2. INTRODUCTION

addition [A]=[T] and [C]=[G]. Points represent observed values in the 7 bacterial
chromosomes. The whole graph is entirely defined by the code given in the
example of the chargaff dataset (?chargaff to see it).

Another example of highly specialised graph is given by the function tablecode()

to display a genetic code as in textbooks :

tablecode()

Genetic code 1 : standard

T T T Phe
T T C Phe
T T A Leu
T T G Leu

T CT Ser
T CC Ser
T CA Ser
T CG Ser

T AT Tyr
T A C Tyr
T AA Stp
T A G Stp

T GT Cys
T GC Cys
T GA Stp
T GG Trp

CT T Leu
CT C Leu
CT A Leu
CT G Leu

CCT Pro
CCC Pro
CCA Pro
CCG Pro

CAT His
CA C His
CAA Gln
CA G Gln

CGT Arg
CGC Arg
CGA Arg
CGG Arg

AT T Ile
AT C Ile
AT A Ile
AT G Met

A CT Thr
A CC Thr
A CA Thr
A CG Thr

AAT Asn
AA C Asn
AAA Lys
AA G Lys

A GT Ser
A GC Ser
A GA Arg
A GG Arg

GT T Val
GT C Val
GT A Val
GT G Val

GCT Ala
GCC Ala
GCA Ala
GCG Ala

GAT Asp
GA C Asp
GAA Glu
GA G Glu

GGT Gly
GGC Gly
GGA Gly
GGG Gly

It’s very convenient in practice to have a genetic code at hand, and moreover
here, all genetic code variants are available :

tablecode(numcode = 2)

Genetic code 2 : vertebrate.mitochondrial

T T T Phe
T T C Phe
T T A Leu
T T G Leu

T CT Ser
T CC Ser
T CA Ser
T CG Ser

T AT Tyr
T A C Tyr
T AA Stp
T A G Stp

T GT Cys
T GC Cys
T GA Trp
T GG Trp

CT T Leu
CT C Leu
CT A Leu
CT G Leu

CCT Pro
CCC Pro
CCA Pro
CCG Pro

CAT His
CA C His
CAA Gln
CA G Gln

CGT Arg
CGC Arg
CGA Arg
CGG Arg

AT T Ile
AT C Ile
AT A Met
AT G Met

A CT Thr
A CC Thr
A CA Thr
A CG Thr

AAT Asn
AA C Asn
AAA Lys
AA G Lys

A GT Ser
A GC Ser
A GA Stp
A GG Stp

GT T Val
GT C Val
GT A Val
GT G Val

GCT Ala
GCC Ala
GCA Ala
GCG Ala

GAT Asp
GA C Asp
GAA Glu
GA G Glu

GGT Gly
GGC Gly
GGA Gly
GGG Gly

As from seqinR 1.0-4, it is possible to export the table of a genetic code
into a LATEX document, for instance table 2.2 and table 2.3 were automatically
generated with the following code:

2.7. ABOUT THE LEARNING CURVE 19

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Thr CCT Pro CAT His CGT Arg
CTC Thr CCC Pro CAC His CGC Arg
CTA Thr CCA Pro CAA Gln CGA Arg
CTG Thr CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 2.2: Genetic code number 3: yeast.mitochondrial.

tablecode(numcode = 3, latexfile = "../tables/code3.tex", size = "small")
tablecode(numcode = 4, latexfile = "../tables/code4.tex", size = "small")

The tables were then inserted in the LATEX file with:

\input{../tables/code3.tex}

\input{../tables/code4.tex}

2.7.6 Data as fast moving targets

In research area, data are not always stable. Consider figure 1 from [57] which
is reproduced here in figure 2.1. Data have been updated since then, but we can
re-use the same code10 to update the figure:

data <- get.db.growth()
scale <- 1

ltymoore <- 1 # line type for Moore's law
date <- data$date
Nucleotides <- data$Nucleotides
Month <- data$Month
plot.default(date, log10(Nucleotides),

main = "Update of Fig. 1 from Lobry (2004) LNCS, 3039:679:\nThe exponential growth of genome sequence data", xlab = "Year",
ylab = "Log10 number of nucleotides", pch = 19, las = 1,
cex = scale, cex.axis = scale, cex.lab = scale)

abline(lm(log10(Nucleotides) ~ date), lwd = 2)
lm1 <- lm(log(Nucleotides) ~ date)
mu <- lm1$coef[2]
dbt <- log(2)/mu
dbt <- 12 * dbt
x <- mean(date)
y <- mean(log10(Nucleotides))
a <- log10(2)/1.5

10 This code was adapted from http://pbil.univ-lyon1.fr/members/lobry/repro/

lncs04/.

http://pbil.univ-lyon1.fr/members/lobry/repro/lncs04/
http://pbil.univ-lyon1.fr/members/lobry/repro/lncs04/

20 CHAPTER 2. INTRODUCTION

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 2.3: Genetic code number 4: protozoan.mitochondrial+mycoplasma.

b <- y - a * x
lm10 <- lm(log10(Nucleotides) ~ date)
for (i in seq(-10, 10, by = 1)) if (i != 0)

abline(coef = c(b + i, a), col = "black", lty = ltymoore)

1985 1990 1995 2000 2005 2010 2015

6

7

8

9

10

11

12

Update of Fig. 1 from Lobry (2004) LNCS, 3039:679:
The exponential growth of genome sequence data

Year

Lo
g1

0
nu

m
be

r
of

 n
uc

le
ot

id
es

The doubling time is now 18.8 months.

2.7. ABOUT THE LEARNING CURVE 21

Figure 2.1: Screenshot of figure 1 from [57]. The exponential growth of ge-
nomic sequence data mimics Moore’s law. The source of data is the decem-
ber 2003 release note (realnote.txt) from the EMBL database available at
http://www.ebi.ac.uk/. External lines correspond to what would be expected
with a doubling time of 18 months. The central line through points is the best
least square fit, corresponding to a doubling time of 16.9 months.

2.7.7 Sweave() and xtable()

For LATEX users, it’s worth mentioning the fantastic tool contributed by Friedrich
Leish [51] called Sweave() that allows for the automatic insertion of outputs
(including graphics) in a LATEX document. In the same spirit, there is a package
called xtable [12] to coerce data into LATEX tables.

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.0-11,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Tue May 31 18:00:39 2016

• LATEX compilation time was: June 2, 2016

http://www.ebi.ac.uk/

22 CHAPTER 2. INTRODUCTION

CHAPTER 3

Importing sequences from flat files

Charif, D. Lobry, J.R.

3.1 Importing raw sequence data from FASTA
files

3.1.1 FASTA files examples

The FASTA format is very simple and widely used for simple import of biological
sequences. It was used originally by the FASTA program [72]. It begins with a
single-line description starting with a character ’>’, followed by lines of sequence
data of maximum 80 character each. Lines starting with a semi-colon character
’;’ are comment lines. Examples of files in FASTA format are distributed with
the seqinR package in the sequences directory:

list.files(path = system.file("sequences", package = "seqinr"), pattern = ".fasta")

[1] "Anouk.fasta" "bordetella.fasta" "ct.fasta.gz"
[4] "DarrenObbard.fasta" "ecolicgpe5.fasta" "gopher.fasta"
[7] "humanMito.fasta" "legacy.fasta" "louse.fasta"
[10] "malM.fasta" "ortho.fasta" "seqAA.fasta"
[13] "smallAA.fasta" "smallAA.fasta.gz"

Here is an example of a FASTA file:

cat(readLines(system.file("sequences/seqAA.fasta", package = "seqinr")), sep = "\n")

>A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC*

Here is an example of a FASTA file with comment lines:

cat(readLines(system.file("sequences/legacy.fasta", package = "seqinr")), sep = "\n")

23

24 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

>LEGACY 921 bp
;
; Example of a FASTA file using comment lines starting with a semicolon
; as allowed in the original FASTA program:
;
; if (line[0]!='>'&& line[0]!=';') {
; for (i=l_offset; (n<maxs && rn < sstop)&&
; ((ic=qascii[line[i]&AAMASK])<EL); i++)
; if (ic<NA && ++rn > sstart) seq[n++]= ic;
; if (ic == ES || rn > sstop) break;
; }
;
; From file getseq.c in FASTA program version 35.2.5
;
ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

3.1.2 The function read.fasta()

The function read.fasta() imports sequences from FASTA files into your
workspace.

DNA file example

The example file looks like:

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
cat(readLines(dnafile), sep = "\n")

>XYLEECOM.MALM 921 bp ACCESSION E00218, X04477
ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCG
CCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCC
ATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAG
ACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTT
GCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTG
AACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCA
TCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGAT
CGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTG
GTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCC
TATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACC
ACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGA
CCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCT
GTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAA
AGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTA
AAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGC
AGTGTAAAAGGCAAGGGGTAA

With default arguments the output looks like:

read.fasta(file = dnafile)

$XYLEECOM.MALM
[1] "a" "t" "g" "a" "a" "a" "a" "t" "g" "a" "a" "t" "a" "a" "a" "a" "g" "t"
[19] "c" "t" "c" "a" "t" "c" "g" "t" "c" "c" "t" "c" "t" "g" "t" "t" "t" "a"
[37] "t" "c" "a" "g" "c" "a" "g" "g" "g" "t" "t" "a" "c" "t" "g" "g" "c" "a"
[55] "a" "g" "c" "g" "c" "g" "c" "c" "t" "g" "g" "a" "a" "t" "t" "a" "g" "c"
[73] "c" "t" "t" "g" "c" "c" "g" "a" "t" "g" "t" "t" "a" "a" "c" "t" "a" "c"
[91] "g" "t" "a" "c" "c" "g" "c" "a" "a" "a" "a" "c" "a" "c" "c" "a" "g" "c"
[109] "g" "a" "c" "g" "c" "g" "c" "c" "a" "g" "c" "c" "a" "t" "t" "c" "c" "a"

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 25

[127] "t" "c" "t" "g" "c" "t" "g" "c" "g" "c" "t" "g" "c" "a" "a" "c" "a" "a"
[145] "c" "t" "c" "a" "c" "c" "t" "g" "g" "a" "c" "a" "c" "c" "g" "g" "t" "c"
[163] "g" "a" "t" "c" "a" "a" "t" "c" "t" "a" "a" "a" "a" "c" "c" "c" "a" "g"
[181] "a" "c" "c" "a" "c" "c" "c" "a" "a" "c" "t" "g" "g" "c" "g" "a" "c" "c"
[199] "g" "g" "c" "g" "g" "c" "c" "a" "a" "c" "a" "a" "c" "t" "g" "a" "a" "c"
[217] "g" "t" "t" "c" "c" "c" "g" "g" "c" "a" "t" "c" "a" "g" "t" "g" "g" "t"
[235] "c" "c" "g" "g" "t" "t" "g" "c" "t" "g" "c" "g" "t" "a" "c" "a" "g" "c"
[253] "g" "t" "c" "c" "c" "g" "g" "c" "a" "a" "a" "c" "a" "t" "t" "g" "g" "c"
[271] "g" "a" "a" "c" "t" "g" "a" "c" "c" "c" "t" "g" "a" "c" "g" "c" "t" "g"
[289] "a" "c" "c" "a" "g" "c" "g" "a" "a" "g" "t" "g" "a" "a" "c" "a" "a" "a"
[307] "c" "a" "a" "a" "c" "c" "a" "g" "c" "g" "t" "t" "t" "t" "t" "g" "c" "g"
[325] "c" "c" "g" "a" "a" "c" "g" "t" "g" "c" "t" "g" "a" "t" "t" "c" "t" "t"
[343] "g" "a" "t" "c" "a" "g" "a" "a" "c" "a" "t" "g" "a" "c" "c" "c" "c" "a"
[361] "t" "c" "a" "g" "c" "c" "t" "t" "c" "t" "t" "c" "c" "c" "c" "a" "g" "c"
[379] "a" "g" "t" "t" "a" "t" "t" "t" "c" "a" "c" "c" "t" "a" "c" "c" "a" "g"
[397] "g" "a" "a" "c" "c" "a" "g" "g" "c" "g" "t" "g" "a" "t" "g" "a" "g" "t"
[415] "g" "c" "a" "g" "a" "t" "c" "g" "g" "c" "t" "g" "g" "a" "a" "g" "g" "c"
[433] "g" "t" "t" "a" "t" "g" "c" "g" "c" "c" "t" "g" "a" "c" "a" "c" "c" "g"
[451] "g" "c" "g" "t" "t" "g" "g" "g" "g" "c" "a" "g" "c" "a" "a" "a" "a" "a"
[469] "c" "t" "t" "t" "a" "t" "g" "t" "t" "c" "t" "g" "g" "t" "c" "t" "t" "t"
[487] "a" "c" "c" "a" "c" "g" "g" "a" "a" "a" "a" "a" "g" "a" "t" "c" "t" "c"
[505] "c" "a" "g" "c" "a" "g" "a" "c" "g" "a" "c" "c" "c" "a" "a" "c" "t" "g"
[523] "c" "t" "c" "g" "a" "c" "c" "c" "g" "g" "c" "t" "a" "a" "a" "g" "c" "c"
[541] "t" "a" "t" "g" "c" "c" "a" "a" "g" "g" "g" "c" "g" "t" "c" "g" "g" "t"
[559] "a" "a" "c" "t" "c" "g" "a" "t" "c" "c" "c" "g" "g" "a" "t" "a" "t" "c"
[577] "c" "c" "c" "g" "a" "t" "c" "c" "g" "g" "t" "t" "g" "c" "t" "c" "g" "t"
[595] "c" "a" "t" "a" "c" "c" "a" "c" "c" "g" "a" "t" "g" "g" "c" "t" "t" "a"
[613] "c" "t" "g" "a" "a" "a" "c" "t" "g" "a" "a" "a" "g" "t" "g" "a" "a" "a"
[631] "a" "c" "g" "a" "a" "c" "t" "c" "c" "a" "g" "c" "t" "c" "c" "a" "g" "c"
[649] "g" "t" "g" "t" "t" "g" "g" "t" "a" "g" "g" "a" "c" "c" "c" "t" "t" "a"
[667] "t" "t" "t" "g" "g" "t" "t" "c" "c" "t" "c" "c" "g" "c" "t" "c" "c" "a"
[685] "g" "c" "t" "c" "c" "g" "g" "t" "t" "a" "c" "g" "g" "t" "a" "g" "g" "t"
[703] "a" "a" "c" "a" "c" "g" "g" "c" "g" "g" "c" "a" "c" "c" "a" "g" "c" "t"
[721] "g" "t" "g" "g" "c" "t" "g" "c" "a" "c" "c" "c" "g" "c" "t" "c" "c" "g"
[739] "g" "c" "a" "c" "c" "g" "g" "t" "g" "a" "a" "g" "a" "a" "a" "a" "g" "c"
[757] "g" "a" "g" "c" "c" "g" "a" "t" "g" "c" "t" "c" "a" "a" "c" "g" "a" "c"
[775] "a" "c" "g" "g" "a" "a" "a" "g" "t" "t" "a" "t" "t" "t" "t" "a" "a" "t"
[793] "a" "c" "c" "g" "c" "g" "a" "t" "c" "a" "a" "a" "a" "a" "c" "g" "c" "t"
[811] "g" "t" "c" "g" "c" "g" "a" "a" "a" "g" "g" "t" "g" "a" "t" "g" "t" "t"
[829] "g" "a" "t" "a" "a" "g" "g" "c" "g" "t" "t" "a" "a" "a" "a" "c" "t" "g"
[847] "c" "t" "t" "g" "a" "t" "g" "a" "a" "g" "c" "t" "g" "a" "a" "c" "g" "c"
[865] "t" "t" "g" "g" "g" "a" "t" "c" "g" "a" "c" "a" "t" "c" "t" "g" "c" "c"
[883] "c" "g" "t" "t" "c" "c" "a" "c" "c" "t" "t" "t" "a" "t" "c" "a" "g" "c"
[901] "a" "g" "t" "g" "t" "a" "a" "a" "a" "g" "g" "c" "a" "a" "g" "g" "g" "g"
[919] "t" "a" "a"
attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters can be neutralized, for instance:

read.fasta(file = dnafile, as.string = TRUE)

$XYLEECOM.MALM
[1] "atgaaaatgaataaaagtctcatcgtcctctgtttatcagcagggttactggcaagcgcgcctggaattagccttgccgatgttaactacgtaccgcaaaacaccagcgacgcgccagccattccatctgctgcgctgcaacaactcacctggacaccggtcgatcaatctaaaacccagaccacccaactggcgaccggcggccaacaactgaacgttcccggcatcagtggtccggttgctgcgtacagcgtcccggcaaacattggcgaactgaccctgacgctgaccagcgaagtgaacaaacaaaccagcgtttttgcgccgaacgtgctgattcttgatcagaacatgaccccatcagccttcttccccagcagttatttcacctaccaggaaccaggcgtgatgagtgcagatcggctggaaggcgttatgcgcctgacaccggcgttggggcagcaaaaactttatgttctggtctttaccacggaaaaagatctccagcagacgacccaactgctcgacccggctaaagcctatgccaagggcgtcggtaactcgatcccggatatccccgatccggttgctcgtcataccaccgatggcttactgaaactgaaagtgaaaacgaactccagctccagcgtgttggtaggacccttatttggttcctccgctccagctccggttacggtaggtaacacggcggcaccagctgtggctgcacccgctccggcaccggtgaagaaaagcgagccgatgctcaacgacacggaaagttattttaataccgcgatcaaaaacgctgtcgcgaaaggtgatgttgataaggcgttaaaactgcttgatgaagctgaacgcttgggatcgacatctgcccgttccacctttatcagcagtgtaaaaggcaaggggtaa"
attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

Forcing to lower case letters can be disabled this way:

read.fasta(file = dnafile, as.string = TRUE, forceDNAtolower = FALSE)

$XYLEECOM.MALM
[1] "ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGCGCGCCTGGAATTAGCCTTGCCGATGTTAACTACGTACCGCAAAACACCAGCGACGCGCCAGCCATTCCATCTGCTGCGCTGCAACAACTCACCTGGACACCGGTCGATCAATCTAAAACCCAGACCACCCAACTGGCGACCGGCGGCCAACAACTGAACGTTCCCGGCATCAGTGGTCCGGTTGCTGCGTACAGCGTCCCGGCAAACATTGGCGAACTGACCCTGACGCTGACCAGCGAAGTGAACAAACAAACCAGCGTTTTTGCGCCGAACGTGCTGATTCTTGATCAGAACATGACCCCATCAGCCTTCTTCCCCAGCAGTTATTTCACCTACCAGGAACCAGGCGTGATGAGTGCAGATCGGCTGGAAGGCGTTATGCGCCTGACACCGGCGTTGGGGCAGCAAAAACTTTATGTTCTGGTCTTTACCACGGAAAAAGATCTCCAGCAGACGACCCAACTGCTCGACCCGGCTAAAGCCTATGCCAAGGGCGTCGGTAACTCGATCCCGGATATCCCCGATCCGGTTGCTCGTCATACCACCGATGGCTTACTGAAACTGAAAGTGAAAACGAACTCCAGCTCCAGCGTGTTGGTAGGACCCTTATTTGGTTCCTCCGCTCCAGCTCCGGTTACGGTAGGTAACACGGCGGCACCAGCTGTGGCTGCACCCGCTCCGGCACCGGTGAAGAAAAGCGAGCCGATGCTCAACGACACGGAAAGTTATTTTAATACCGCGATCAAAAACGCTGTCGCGAAAGGTGATGTTGATAAGGCGTTAAAACTGCTTGATGAAGCTGAACGCTTGGGATCGACATCTGCCCGTTCCACCTTTATCAGCAGTGTAAAAGGCAAGGGGTAA"

26 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

attr(,"name")
[1] "XYLEECOM.MALM"
attr(,"Annot")
[1] ">XYLEECOM.MALM 921 bp ACCESSION E00218, X04477"
attr(,"class")
[1] "SeqFastadna"

Protein file example

The example file looks like:

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
cat(readLines(aafile), sep = "\n")

>A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC*

Read the protein sequence file, looks like:

read.fasta(aafile, seqtype = "AA")

$A06852
[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L" "L" "L" "S" "Q" "L"
[19] "P" "R" "E" "I" "P" "G" "Q" "S" "T" "N" "D" "F" "I" "K" "A" "C" "G" "R"
[37] "E" "L" "V" "R" "L" "W" "V" "E" "I" "C" "G" "S" "V" "S" "W" "G" "R" "T"
[55] "A" "L" "S" "L" "E" "E" "P" "Q" "L" "E" "T" "G" "P" "P" "A" "E" "T" "M"
[73] "P" "S" "S" "I" "T" "K" "D" "A" "E" "I" "L" "K" "M" "M" "L" "E" "F" "V"
[91] "P" "N" "L" "P" "Q" "E" "L" "K" "A" "T" "L" "S" "E" "R" "Q" "P" "S" "L"
[109] "R" "E" "L" "Q" "Q" "S" "A" "S" "K" "D" "S" "N" "L" "N" "F" "E" "E" "F"
[127] "K" "K" "I" "I" "L" "N" "R" "Q" "N" "E" "A" "E" "D" "K" "S" "L" "L" "E"
[145] "L" "K" "N" "L" "G" "L" "D" "K" "H" "S" "R" "K" "K" "R" "L" "F" "R" "M"
[163] "T" "L" "S" "E" "K" "C" "C" "Q" "V" "G" "C" "I" "R" "K" "D" "I" "A" "R"
[181] "L" "C" "*"
attr(,"name")
[1] "A06852"
attr(,"Annot")
[1] ">A06852 183 residues"
attr(,"class")
[1] "SeqFastaAA"

The same, but as string and without attributes setting, looks like:

read.fasta(aafile, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)

$A06852
[1] "MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEEPQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSNLNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIARLC*"

Compressed file example

The original file before compression looks like:

uncompressed <- system.file("sequences/smallAA.fasta", package = "seqinr")
cat(readLines(uncompressed), sep = "\n")

>smallAA A very small AA file in FASTA format
SEQINRSEQINRSEQINRSEQINR*

The compressed file example is full of mojibakes because of its binary nature,
but the readLines() is still able to read it correctly:

compressed <- system.file("sequences/smallAA.fasta.gz", package = "seqinr")
readChar(compressed, nchar = 1000, useBytes = TRUE)

[1] "\037\x8b\b\b\xd4\024PW"

cat(readLines(compressed), sep = "\n")

>smallAA A very small AA file in FASTA format
SEQINRSEQINRSEQINRSEQINR*

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 27

We can therefore import the sequences directly from a gzipped file:

res1 <- read.fasta(uncompressed)
res2 <- read.fasta(compressed)
identical(res1, res2)

[1] TRUE

This automatic conversion works well for local files but is no more active
when you read the data from an URL, for instance:

myurl <- "ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/plasmid.1.rna.fna.gz"
try.res <- try(read.fasta(myurl))
try.res

[1] "Error in read.fasta(myurl) : no line starting with a > character found\n"
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in read.fasta(myurl): no line starting with a > character found>

A simple workthrough is to encapsulate this into gzcon() :

myseq <- read.fasta(gzcon(url(myurl)))
getName(myseq)

[1] "gi|470467018|ref|NR_074151.1|" "gi|444303868|ref|NR_074290.1|"
[3] "gi|452192228|ref|NR_075742.1|" "gi|451991842|ref|NR_075394.1|"
[5] "gi|451991838|ref|NR_075390.1|" "gi|444303919|ref|NR_074342.1|"
[7] "gi|470486111|ref|NR_076736.1|" "gi|470480648|ref|NR_076426.1|"
[9] "gi|470478007|ref|NR_076423.1|"

3.1.3 The function write.fasta()

This function writes sequences to a file in FASTA format. Read 3 coding se-
quences sequences from a FASTA file:

ortho <- read.fasta(file = system.file("sequences/ortho.fasta", package = "seqinr"))
length(ortho)

[1] 3

ortho[[1]][1:12]

[1] "a" "t" "g" "g" "c" "t" "c" "a" "g" "c" "g" "g"

Select only third codon positions:

ortho3 <- lapply(ortho, function(x) x[seq(from = 3, to = length(x), by = 3)])
ortho3[[1]][1:4]

[1] "g" "t" "g" "g"

Write the modified sequences to a file:

tmpf <- tempfile()
write.fasta(sequences = ortho3, names = names(ortho3), nbchar = 80, file.out = tmpf)

Read them again from the same file and check that sequences are preserved:

ortho3bis <- read.fasta(tmpf, set.attributes = FALSE)
identical(ortho3bis, ortho3)

[1] TRUE

28 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Figure 3.1: . Screenshot copy of figure 1 from [18]. The complete genome
sequence of Chlamydia trachomatis (accession number: AE001273) was used
to illustrate the method used by oriloc. (a) A DNA-walk is performed by
reading the sequence in the third codon positions predicted by glimmer and
walking into the plane according to the four directions defined by the four
bases as indicated on the bottom left of the figure. The resulting DNA-walk
is then summarized by projection onto the orthogonal regression line pointing
out at about 11 o’clock in the figure. (b) The projected values are used as a
composite skew index plotted versus map position on the chromosome. The
origin is predicted at the maximum skew value while the terminus is predicted
at the minimum.

3.1.4 Big room examples

Oriloc example (Chlamydia trachomatis complete genome)

A more consequent example is given in the fasta file ct.fasta.gz which contains
the complete genome of Chlamydia trachomatis that was used in [18]. You
should be able to reproduce figure 1b from this paper (cf. screenshot in figure
3.1) with the following code:

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package ="seqinr"),
g2.coord = system.file("sequences/ct.predict", package = "seqinr"),
oldoriloc = TRUE)

plot(outst, outsk/1000, type="l", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb",
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome), las = 1)

abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 29

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

Terminus

Origin

Note that the algorithm has been improved since then and that it’s more
advisable to use the default option oldoriloc = FALSE if you are interested in
the prediction of origins and terminus of replication from base composition biases
(more on this at http://pbil.univ-lyon1.fr/software/oriloc.html). See
also [62] for a review on this topic. Here is the improved version:

out <- oriloc()
plot(outst, outsk/1000, type="l", xlab = "Map position in Kb",

ylab = "Cumulated composite skew in Kb",
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome), las = 1)

mtext("New version")
abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")

http://pbil.univ-lyon1.fr/software/oriloc.html

30 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
po

si
te

 s
ke

w
 in

 K
b

New version

Terminus

Origin

You can also call the draw.oriloc() function for the simultaneous repre-
sentation of the CDS, AT and GC skew along with the combined skew of the
previous plots:

draw.oriloc(out,
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome),
ta.mtext = "TA skew", ta.col = "red",
cg.mtext = "CG skew", cg.col = "blue",
cds.mtext = "CDS skew", cds.col = "seagreen",
add.grid = FALSE)

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 31

0 200 400 600 800 1000

−4

−2

0

2

4

6

8

Chlamydia t rachomat is complete genome

Map position in Kb

C
um

ul
at

ed
 c

om
bi

ne
d

sk
ew

 in
 K

b

−
50

−
40

−
30

−
20

−
10

0
10

20

TA skew CG skew CDS skew

Example with 21,161 proteins from Arabidobpsis thaliana

As from seqinR 1.0-5 the automatic conversion of sequences into vector of
single characters and the automatic attribute settings can be neutralized, for
instance :

smallAA <- system.file("sequences/smallAA.fasta", package = "seqinr")
read.fasta(smallAA, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)

$smallAA
[1] "SEQINRSEQINRSEQINRSEQINR*"

This is interesting to save time and space when reading large FASTA files.
Let’s give a practical example. In their paper [32], Matthew Hannah, Arnd

Arabidobpsis thaliana. Source: wikipedia.
Heyer and Dirk Hincha were working on Arabidobpsis thaliana genes in or-
der to detect those involved in cold acclimation. They were interested by
the detection of proteins called hydrophilins, that had a mean hydrophilic-
ity of over 1 and glycine content of over 0.08 [20], because they are though
to be important for freezing tolerance. The starting point was a FASTA file
called ATH1_pep_cm_20040228 downloaded from the Arabidopsis Information
Ressource (TAIR at http://www.arabidopsis.org/) which contains the se-
quences of 21,161 proteins.

athfile <- "ATH1_pep_cm_20040228.fasta"
download.file(paste("http://seqinr.r-forge.r-project.org", athfile, sep = "/"),

athfile)
system.time(ath <- read.fasta(athfile, seqtype = "AA", as.string = TRUE,

set.attributes = FALSE))

user system elapsed
3.827 0.036 3.863

http://www.arabidopsis.org/

32 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

It’s about 10 seconds here to read 21,161 protein sequences. We save them
in XDR binary format1 to read them faster later at will:

save(ath, file = "ath.RData")

system.time(load("ath.RData"))

user system elapsed
0.161 0.002 0.162

Now it’s less than a second to load the whole data set thanks to the XDR
format. The object size is about 15 Mo in RAM, that is something very close
to the flat file size on disk:

object.size(ath)/2^20

16.2128143310547 bytes

file.info(athfile)$size/2^20

[1] 15.89863

Using strings for sequence storage is very comfortable when there is an effi-
cient function to compute what you want. For instance, suppose that you are
interested by the distribution of protein size in Arabidopsis thaliana. There is
an efficient vectorized function called nchar() that will do the job, we just have
to remove one unit because of the stop codon which is translated as a star (*)
in this data set. This is a simple and direct task under :

nres <- nchar(ath) - 1
hist(log10(nres), col = grey(0.7), xlab = "Protein size (log10 scale)",
ylab = "Protein count",
main = expression(italic(Arabidopsis~~thaliana)))

Arabidopsis thal iana

Protein size (log10 scale)

P
ro

te
in

 c
ou

nt

1.5 2.0 2.5 3.0 3.5

0
20

00
40

00
60

00
80

00

1 this is a multi-platform compatible binary format: you can save data under unix and
load them under Mac OS X, for instance, without problem.

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 33

However, sometimes it is more convenient to work with the single character
vector representation of sequences. For instance, to count the number of glycine
(G), we first play with one sequence, let’s take the smallest one in the data set:

which.min(nres)

At2g25990.1
9523

ath[[9523]]

[1] "MAGSQREKLKPRTKGSTRC*"

s2c(ath[[9523]])

[1] "M" "A" "G" "S" "Q" "R" "E" "K" "L" "K" "P" "R" "T" "K" "G" "S" "T" "R"
[19] "C" "*"

s2c(ath[[9523]]) == "G"

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

sum(s2c(ath[[9523]]) == "G")

[1] 2

We can now easily define a vectorised function to count the number of
glycine:

ngly <- function(data){
res <- sapply(data, function(x) sum(s2c(x) == "G"))
names(res) <- NULL
return(res)
}

Now we can use ngly() in the same way that nchar() so that computing
glycine frequencies is very simple:

ngly(ath[1:10])

[1] 25 5 29 128 8 27 27 26 21 18

fgly <- ngly(ath)/nres

And we can have a look at the distribution:

hist(fgly, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")
abline(v = 0.08, col = "red")
legend("topright",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

34 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Distribution of Glycine frequency

Glycine content

P
ro

te
in

 c
ou

nt

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

00
10

00
0

15
00

0
20

00
0

Threshold for hydrophilines

Let’s use a boxplot instead:

boxplot(fgly, horizontal = TRUE, col = grey(0.7), main = "Distribution of Glycine frequency",
xlab = "Glycine content", ylab = "Protein count")
abline(v = 0.08, col = "red")
legend("topright",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 35

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Distribution of Glycine frequency

Glycine content

P
ro

te
in

 c
ou

nt

Threshold for hydrophilines

The threshold value for the glycine content in hydrophilines is therefore very
close to the third quartile of the distribution:

summary(fgly)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.04907 0.06195 0.06475 0.07639 0.59240

We want now to compute something relatively more complex, we want the
Kyte and Doolittle [49] hydropathy score of our proteins (aka GRAVY score).
This is basically a linear form on amino acid frequencies:

s =
20∑

i=1
αifi

where αi is the coefficient for amino acid number i and fi the relative frequency
of amino acid number i. The coefficients αi are given in the KD component of
the data set EXP:

data(EXP)
EXP$KD

[1] -3.9 -3.5 -3.9 -3.5 -0.7 -0.7 -0.7 -0.7 -4.5 -0.8 -4.5 -0.8 4.5 4.5
[15] 1.9 4.5 -3.5 -3.2 -3.5 -3.2 -1.6 -1.6 -1.6 -1.6 -4.5 -4.5 -4.5 -4.5
[29] 3.8 3.8 3.8 3.8 -3.5 -3.5 -3.5 -3.5 1.8 1.8 1.8 1.8 -0.4 -0.4
[43] -0.4 -0.4 4.2 4.2 4.2 4.2 0.0 -1.3 0.0 -1.3 -0.8 -0.8 -0.8 -0.8
[57] 0.0 2.5 -0.9 2.5 3.8 2.8 3.8 2.8

This is for codons in lexical order, that is:

words()

[1] "aaa" "aac" "aag" "aat" "aca" "acc" "acg" "act" "aga" "agc" "agg" "agt"
[13] "ata" "atc" "atg" "att" "caa" "cac" "cag" "cat" "cca" "ccc" "ccg" "cct"
[25] "cga" "cgc" "cgg" "cgt" "cta" "ctc" "ctg" "ctt" "gaa" "gac" "gag" "gat"
[37] "gca" "gcc" "gcg" "gct" "gga" "ggc" "ggg" "ggt" "gta" "gtc" "gtg" "gtt"
[49] "taa" "tac" "tag" "tat" "tca" "tcc" "tcg" "tct" "tga" "tgc" "tgg" "tgt"
[61] "tta" "ttc" "ttg" "ttt"

36 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

But since we are working with protein sequences here we name the coefficient
according to their amino acid :

names(EXP$KD) <- sapply(words(),function(x) translate(s2c(x)))

We just need one value per amino acid, we sort them in the lexical order,
and we reverse the scale so as to have positive values for hydrophilic proteins as
in [32] :

kdc <- EXP$KD[unique(names(EXP$KD))]
kdc <- -kdc[order(names(kdc))]
kdc

* A C D E F G H I K L M N P Q
0.0 -1.8 -2.5 3.5 3.5 -2.8 0.4 3.2 -4.5 3.9 -3.8 -1.9 3.5 1.6 3.5
R S T V W Y

4.5 0.8 0.7 -4.2 0.9 1.3

Now that we have the vector of coefficient αi, we need the amino acid relative
frequencies fi, let’s play with one protein first:

ath[[9523]]

[1] "MAGSQREKLKPRTKGSTRC*"

s2c(ath[[9523]])

[1] "M" "A" "G" "S" "Q" "R" "E" "K" "L" "K" "P" "R" "T" "K" "G" "S" "T" "R"
[19] "C" "*"

table(s2c(ath[[9523]]))

* A C E G K L M P Q R S T
1 1 1 1 2 3 1 1 1 1 3 2 2

table(factor(s2c(ath[[9523]]), levels = names(kdc)))

* A C D E F G H I K L M N P Q R S T V W Y
1 1 1 0 1 0 2 0 0 3 1 1 0 1 1 3 2 2 0 0 0

Now that we know how to count amino acids it’s relatively easy thanks to
R’s matrix operator %*% to define a vectorised function to compute a linear form
on amino acid frequencies:

linform <- function(data, coef){
f <- function(x){
aaseq <- s2c(x)
freq <- table(factor(aaseq, levels = names(coef)))/length(aaseq)
return(coef %*% freq)

}
res <- sapply(data, f)
names(res) <- NULL
return(res)
}
kdath <- linform(ath,kdc)

Let’s have a look at the distribution:

boxplot(kdath, horizontal = TRUE, col = grey(0.7),
main = "Distribution of Hydropathy index",
xlab = "Kyte and Doolittle GRAVY score")
abline(v = 1, col = "red")
legend("topleft",inset=0.01,lty=1,col="red",legend="Threshold for hydrophilines")

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 37

−1 0 1 2

Distribution of Hydropathy index

Kyte and Doolittle GRAVY score

Threshold for hydrophilines

The threshold is therefore much more stringent here than the previous one
on glycine content. Let’s define a vector of logicals to select the hydrophilines:

hydrophilines <- fgly > 0.08 & kdath > 1
head(names(ath)[hydrophilines])

[1] "At1g02840.1" "At1g02840.2" "At1g02840.3" "At1g03320.1" "At1g03820.1"
[6] "At1g04450.1"

Check with a simple graph that there is no mistake here:

library(MASS)
dst <- kde2d(kdath,fgly, n = 50)
filled.contour(x = dst, color.palette = topo.colors,
plot.axes = {
axis(1)
axis(2)
title(xlab="Kyte and Doolittle GRAVY score", ylab = "Glycine content",
main = "Hydrophilines location")

abline(v=1, col = "yellow")
abline(h=0.08, col = "yellow")
points(kdath[hydrophilines], fgly[hydrophilines], col = "white")
legend("topleft",inset=0.02,lty=1,col="yellow", bg="white", legend="Threshold for hydrophilines", cex = 0.8)
}

)

38 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

0

5

10

15

20

25

30

−1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

Hydrophilines location

Kyte and Doolittle GRAVY score

G
ly

ci
ne

 c
on

te
nt

Threshold for hydrophilines

Everything seems to be OK, we can save the results in a data frame:

data.frame(list("name"=names(ath),
"KD"=kdath, "Gly"=fgly)) -> athres
head(athres)

name KD Gly
At1g01010.1 At1g01010.1 0.7297674 0.05827506
At1g01020.1 At1g01020.1 -0.1674419 0.03906250
At1g01030.1 At1g01030.1 0.8136490 0.08100559
At1g01040.1 At1g01040.1 0.4159686 0.06705081
At1g01050.1 At1g01050.1 0.4460094 0.03773585
At1g01060.1 At1g01060.1 0.7444272 0.04186047

We want to check now that the results are consistent with those reported pre-
viously. The following table is extracted from the file pgen.0010026.st003.xls
provided as the supplementary material table S3 in [32] and available at http://
www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.

0010026.st003.xls. Only the protein names, the hydrophilicity and the glycine
content were extracted:

read.table(system.file("sequences/hannah.txt", package = "seqinr"), sep = "\t", header = TRUE)->hannah
head(hannah)

AGI Hydrophilicity Glycine
1 At2g19570 -0.10 0.07
2 At2g45290 -0.25 0.09
3 At4g29570 -0.05 0.07
4 At4g29580 -0.10 0.06
5 At4g29600 -0.14 0.06
6 At5g28050 -0.11 0.08

The protein names are not exactly the same because they have no extension.
As explained in [32], when multiple gene models were predicted only the first
was one used. Then:

http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls
http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1189076&blobname=pgen.0010026.st003.xls

3.1. IMPORTING RAW SEQUENCE DATA FROM FASTA FILES 39

hannah$AGI <- paste(hannah$AGI, "1", sep = ".")
head(hannah)

AGI Hydrophilicity Glycine
1 At2g19570.1 -0.10 0.07
2 At2g45290.1 -0.25 0.09
3 At4g29570.1 -0.05 0.07
4 At4g29580.1 -0.10 0.06
5 At4g29600.1 -0.14 0.06
6 At5g28050.1 -0.11 0.08

We join now the two data frames thanks to their common key:

join <- merge(hannah, athres, by.x = "AGI", by.y = "name")
head(join)

AGI Hydrophilicity Glycine KD Gly
1 At1g01120.1 -0.10 0.06 0.106994329 0.05871212
2 At1g01390.1 0.02 0.06 0.009147609 0.06458333
3 At1g01390.1 0.02 0.06 0.009147609 0.06458333
4 At1g01420.1 -0.05 0.07 0.062033195 0.07276507
5 At1g01420.1 -0.05 0.07 0.062033195 0.07276507
6 At1g01480.1 -0.20 0.07 0.200804829 0.06653226

Let’s compare the glycine content :

plot(join$Glycine, join$Gly, xlab = "Glycine content in Hannah et al. (2005)",
ylab = "Glycine content here", main = "Comparison of Glycine content results")
abline(c(0,1), col = "red")

0.02 0.04 0.06 0.08 0.10 0.12

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Comparison of Glycine content results

Glycine content in Hannah et al. (2005)

G
ly

ci
ne

 c
on

te
nt

 h
er

e

The results are consistent, we have just lost some resolution because there
are only two figures after the decimal point in the Excel2 file. Let’s have a look
at the GRAVY score now:

2 this software is a real pain for the reproducibility of results. This is well documented,
see http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html and references
therein.

http://www.burns-stat.com/pages/Tutor/spreadsheet_addiction.html

40 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

plot(join$Hydrophilicity, join$KD, xlab = "GRAVY score in Hannah et al. (2005)",
ylab = "GRAVY score here", main = "Comparison of hydropathy score results", las = 1)
abline(c(0,-1), col = "red")
abline(v=0, lty=2)
abline(h=0, lty=2)

−1.0 −0.5 0.0 0.5

−0.5

0.0

0.5

1.0

Comparison of hydropathy score results

GRAVY score in Hannah et al. (2005)

G
R

A
V

Y
 s

co
re

 h
er

e

The results are consistent, it’s hard to say whether the small differences
are due to Excel rounding errors or because the method used to compute the
GRAVY score was not exactly the same (in [32] they used the mean over a
sliding window).

3.2 Importing aligned sequence data

3.2.1 Aligned sequences files examples

mase

Mase format is a flatfile format use by the SeaView multiple alignment editor
[19], developed by Manolo Gouy and available at http://pbil.univ-lyon1.

fr/software/seaview.html. The mase format is used to store nucleotide or
protein multiple alignments. The beginning of the file must contain a header
containing at least one line (but the content of this header may be empty). The
header lines must begin by ;;. The body of the file has the following structure:
First, each entry must begin by one (or more) commentary line. Commentary
lines begin by the character ;. Again, this commentary line may be empty. After
the commentaries, the name of the sequence is written on a separate line. At
last, the sequence itself is written on the following lines.

http://pbil.univ-lyon1.fr/software/seaview.html
http://pbil.univ-lyon1.fr/software/seaview.html

3.2. IMPORTING ALIGNED SEQUENCE DATA 41

Figure 3.2: The file test.mase under SeaView. This is a graphical multiple
sequence alignment editor developped by Manolo Gouy [19]. SeaView is able to
read and write various alignment formats (NEXUS, MSF, CLUSTAL, FASTA,
PHYLIP, MASE). It allows to manually edit the alignment, and also to run
DOT-PLOT or CLUSTALW programs to locally improve the alignment.

masef <- system.file("sequences/test.mase", package = "seqinr")
cat(readLines(masef), sep = "\n")

;;Aligned by clustal on Tue Jun 30 17:36:11 1998
;empty description
Langur
-KIFERCELARTLKKLGLDGYKGVSLANWVCLAKWESGYNTEATNYNPGDESTDYGIFQINSRYWCNNGKPGAVDACHISCSALLQNNIADAVACAKRVVSDQGIRAWVAWRNHCQNKDVSQYVKGCGV-
;
Baboon
-KIFERCELARTLKRLGLDGYRGISLANWVCLAKWESDYNTQATNYNPGDQSTDYGIFQINSHYWCNDGKPGAVNACHISCNALLQDNITDAVACAKRVVSDQGIRAWVAWRNHCQNRDVSQYVQGCGV-
;
Human
-KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRATNYNAGDRSTDYGIFQINSRYWCNDGKPGAVNACHLSCSALLQDNIADAVACAKRVVRDQGIRAWVAWRNRCQNRDVRQYVQGCGV-
;
Rat
-KTYERCEFARTLKRNGMSGYYGVSLADWVCLAQHESNYNTQARNYDPGDQSTDYGIFQINSRYWCNDGKPRAKNACGIPCSALLQDDITQAIQCAKRVVRDQGIRAWVAWQRHCKNRDLSGYIRNCGV-
;
Cow
-KVFERCELARTLKKLGLDGYKGVSLANWLCLTKWESSYNTKATNYNPSSESTDYGIFQINSKWWCNDGKPNAVDGCHVSCSELMENDIAKAVACAKKIVSEQGITAWVAWKSHCRDHDVSSYVEGCTL-
;
Horse
-KVFSKCELAHKLKAQEMDGFGGYSLANWVCMAEYESNFNTRAFNGKNANGSSDYGLFQLNNKWWCKDNKRSSSNACNIMCSKLLDENIDDDISCAKRVVRDKGMSAWKAWVKHCKDKDLSEYLASCNL-

A screenshot copy of the same file as seen under SeaView is given in figure
3.2.

clustal

The CLUSTAL format (*.aln) is the format of the ClustalW multialignment
tool output [34, 97]. It can be described as follows. The word CLUSTAL is on
the first line of the file. The alignment is displayed in blocks of a fixed length,
each line in the block corresponding to one sequence. Each line of each block
starts with the sequence name (maximum of 10 characters), followed by at least
one space character. The sequence is then displayed in upper or lower cases, ’-’
denotes gaps. The residue number may be displayed at the end of the first line
of each block.

clustalf <-system.file("sequences/test.aln", package = "seqinr")
cat(readLines(clustalf), sep = "\n")

CLUSTAL W (1.82) multiple sequence alignment

FOSB_MOUSE MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60
FOSB_HUMAN MFQAFPGDYDSGSRCSSSPSAESQYLSSVDSFGSPPTAAASQECAGLGEMPGSFVPTVTA 60

**

42 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

FOSB_MOUSE ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPAVDPYDMPGTSYSTPGLSAYSTGGASGS 120
FOSB_HUMAN ITTSQDLQWLVQPTLISSMAQSQGQPLASQPPVVDPYDMPGTSYSTPGMSGYSSGGASGS 120

********************************.***************:*.**:******

FOSB_MOUSE GGPSTSTTTSGPVSARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180
FOSB_HUMAN GGPSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRRELT 180

****** ***** .**

FOSB_MOUSE DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240
FOSB_HUMAN DRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPGCKIPYEEGPGPGPLAEVRD 240

**

FOSB_MOUSE LPGSTSAKEDGFGWLLPPPPPPPLPFQSSRDAPPNLTASLFTHSEVQVLGDPFPVVSPSY 300
FOSB_HUMAN LPGSAPAKEDGFSWLLPPPPPPPLPFQTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSY 300

****:.******.**************:*:**************************.***

FOSB_MOUSE TSSFVLTCPEVSAFAGAQRTSGSEQPSDPLNSPSLLAL 338
FOSB_HUMAN TSSFVLTCPEVSAFAGAQRTSGSDQPSDPLNSPSLLAL 338

***********************:**************

phylip

PHYLIP is a tree construction program [17]. The format is as follows: the
number of sequences and their length (in characters) is on the first line of the
file. The alignment is displayed in an interleaved or sequential format. The
sequence names are limited to 10 characters and may contain blanks.

phylipf <- system.file("sequences/test.phylip", package = "seqinr")
cat(readLines(phylipf), sep = "\n")

5 42
Turkey AAGCTNGGGC ATTTCAGGGT
Salmo gairAAGCCTTGGC AGTGCAGGGT
H. SapiensACCGGTTGGC CGTTCAGGGT
Chimp AAACCCTTGC CGTTACGCTT
Gorilla AAACCCTTGC CGGTACGCTT

GAGCCCGGGC AATACAGGGT AT
GAGCCGTGGC CGGGCACGGT AT
ACAGGTTGGC CGTTCAGGGT AA
AAACCGAGGC CGGGACACTC AT
AAACCATTGC CGGTACGCTT AA

msf

MSF is the multiple sequence alignment format of the GCG sequence analy-
sis package (http://www.accelrys.com/products/gcg/index.html). It be-
gins with the line (all uppercase) !!NA MULTIPLE ALIGNMENT 1.0 for nu-
cleic acid sequences or !!AA MULTIPLE ALIGNMENT 1.0 for amino acid se-
quences. Do not edit or delete the file type if its present (optional). A description
line which contains informative text describing what is in the file. You can add
this information to the top of the MSF file using a text editor (optional). A
dividing line which contains the number of bases or residues in the sequence,
when the file was created, and importantly, two dots (..) which act as a di-
vider between the descriptive information and the following sequence informa-
tion (required). msf files contain some other information: the Name/Weight, a
Separating Line which must include two slashes (//) to divide the name/weight
information from the sequence alignment (required) and the multiple sequence
alignment.

msff <- system.file("sequences/test.msf", package = "seqinr")
cat(readLines(msff), sep = "\n")

http://www.accelrys.com/products/gcg/index.html

3.2. IMPORTING ALIGNED SEQUENCE DATA 43

PileUp of: @Pi3k.Fil

Symbol comparison table: GenRunData:Pileuppep.Cmp CompCheck: 1254

GapWeight: 3.000
GapLengthWeight: 0.100

Pi3k.Msf MSF: 377 Type: P July 12, 1996 10:40 Check: 167 ..

Name: Tor1_Yeast Len: 377 Check: 7773 Weight: 1.00
Name: Tor2_Yeast Len: 377 Check: 8562 Weight: 1.00
Name: Frap_Human Len: 377 Check: 9129 Weight: 1.00
Name: Esr1_Yeast Len: 377 Check: 8114 Weight: 1.00
Name: Tel1_Yeast Len: 377 Check: 1564 Weight: 1.00
Name: Pi4k_Human Len: 377 Check: 8252 Weight: 1.00
Name: Stt4_Yeast Len: 377 Check: 9117 Weight: 1.00
Name: Pik1_Yeast Len: 377 Check: 3455 Weight: 1.00
Name: P3k1_Soybn Len: 377 Check: 4973 Weight: 1.00
Name: P3k2_Soybn Len: 377 Check: 4632 Weight: 1.00
Name: Pi3k_Arath Len: 377 Check: 3585 Weight: 1.00
Name: Vp34_Yeast Len: 377 Check: 5928 Weight: 1.00
Name: P11a_Human Len: 377 Check: 6597 Weight: 1.00
Name: P11b_Human Len: 377 Check: 8486 Weight: 1.00

//

1 50
Tor1_YeastGHE DIRQDSLVMQ LFGLVNTLLK NDSECFKRHL DIQQYPAIPL
Tor2_YeastGHE DIRQDSLVMQ LFGLVNTLLQ NDAECFRRHL DIQQYPAIPL
Frap_HumanGHE DLRQDERVMQ LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL
Esr1_YeastKKE DVRQDNQYMQ FATTMDFLLS KDIASRKRSL GINIYSVLSL
Tel1_Yeast .KALMKGSND DLRQDAIMEQ VFQQVNKVLQ NDKVLRNLDL GIRTYKVVPL
Pi4k_Human ..AAIFKVGD DCRQDMLALQ IIDLFKNIFQ LV....GLDL FVFPYRVVAT
Stt4_Yeast ..AAIFKVGD DCRQDVLALQ LISLFRTIWS SI....GLDV YVFPYRVTAT
Pik1_Yeast ...VIAKTGD DLRQEAFAYQ MIQAMANIWV KE....KVDV WVKRMKILIT
P3k1_Soybn TCKIIFKKGD DLRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT
P3k2_SoybnIFKKGD DIRQDQLVVQ MVSLMDRLLK LE....NLDL HLTPYKVLAT
Pi3k_Arath ..KLIFKKGD DLRQDQLVVQ MVWLMDRLLK LE....NLDL CLTPYKVLAT
Vp34_Yeast .YHLMFKVGD DLRQDQLVVQ IISLMNELLK NE....NVDL KLTPYKILAT
P11a_Human ...IIFKNGD DLRQDMLTLQ IIRIMENIWQ NQ....GLDL RMLPYGCLSI
P11b_Human ...VIFKNGD DLRQDMLTLQ MLRLMDLLWK EA....GLDL RMLPYGCLAT

51 100
Tor1_Yeast SPKSGLLGWV PNSDTFHVLI REHRDAKKIP LNIEHWVMLQ MAPDYENLTL
Tor2_Yeast SPKSGLLGWV PNSDTFHVLI REHREAKKIP LNIEHWVMLQ MAPDYDNLTL
Frap_Human STNSGLIGWV PHCDTLHALI RDYREKKKIL LNIEHRIMLR MAPDYDHLTL
Esr1_Yeast REDCGILEMV PNVVTLRSIL STKYESLKIK Y.....SLKS LHDRWQHTAV
Tel1_Yeast GPKAGIIEFV ANSTSLHQIL SKLHTNDKIT FDQARKGMKA VQTKSN....
Pi4k_Human APGCGVIECI PDCTS..... RDQLGRQTDF GMYDYFTRQY
Stt4_Yeast APGCGVIDVL PNSVS..... RDMLGREAVN GLYEYFTSKF
Pik1_Yeast SANTGLVETI TNAMSVHSIK KALTKKMIED AELDDKGGIA SLNDHFLRAF
P3k1_Soybn GQDEGMLEFI P.SRSLAQI.LSENRSII SYLQ......
P3k2_Soybn GQDEGMLEFI P.SRSLAQI.LSENRSII SYLQ......
Pi3k_Arath GHDEGMLEFI P.SRSLAQI.LSEHRSIT SYLQ......
Vp34_Yeast GPQEGAIEFI P.NDTLASI.LSKYHGIL GYLK......
P11a_Human GDCVGLIEVV RNSHTIMQI.Q.CKGGLK GALQFNSHTL
P11b_Human GDRSGLIEVV STSETIADI.QLNSSNVA AAAAFNKDAL

FASTA

Sequence in fasta format begins with a single-line description (distinguished by
a greater-than (>) symbol), followed by sequence data on the next line.

fastaf <- system.file("sequences/Anouk.fasta", package = "seqinr")
cat(readLines(fastaf), sep = "\n")

>LmjF01.0030
ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGTGTGCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCAGAGGACTTCAACCGCTACGGCGTCGTAGAGGCGATGGACATTTTGCGGCTG
CGTGACGCCATCGAGTACATCAAGGCTAATCCGCTCCCCGCCTCGCGCTCTGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGGCGGCAGTACACAGCACGCGGAACCACAGTCCTTTGCCGGTCG
ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCCTCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAGC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCCTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGACAGACAGGGAGCGGCAAGACACACACGATGCTGGGCAAGGGCCCCGAGCCGGGC

44 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

CTCTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTC
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCC
CTGCGAGCCCTCGAGGACGACAAGGGCCGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGTGTTCGCAGCTGC
GGCTCCACCGGCGCCAATGACACAAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACGTTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCTGACACGGTGGACTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATC
AACAAGAGCCTACTCGCGCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCGAACAACAATGCCGAGCACACGCTGAAC
ACGCTGCGCTACGCCGATCGTGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACT
GTGTGCATGCCCGACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGCCTTTCTACGGCCGCCCCGCTTTTCTCCGGCTCTTCGACG
GCTGCGCCAGCACTTAGAAGCACGCTACTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGCCAAGTCGACTCTCGTCACCCCGAAGCCGCCGTCGCGCGATCGGACTCCG
GACATGGTGTGCACTAAGCGGCCCCGCGACTCAGACAGAAGCGGCGAGGACGAAGTGGTA
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGAGCGGCGCCGAGCTTGTCGCG
GCCCAGCGCAGTCGCGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCAGC
TTTGTGGAGCGCGCACGTCTGCTGGTGAGCGAGAAACGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGAGGAGCTCGACAAGATCGCGCAGCAGGTCGCCGACATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG
>LinJ01.0030
ATGATGTCGGCCGAGCCGCCGTCGTCGCAGCCGTACATCAGCGACGTGCTGCGGCGGTAC
CAGCTGGAGCGCTTTCAGAGTTCCTTTGCATCGAGCATGACCATCAAGGACCTCCTCGCC
CTGCAGCCGGAGGACTTCAACCGCTACGGCGTCGTAGAGGCAATGGACATTTTGCGGCTG
CGCGACGCCATCGAGTACATCAAGGCCAACCCGCTCCCCGCCTCGCGCTCCGGCAGTGAC
GTGCTCGACAACGACGGCGACGGCGACGGCGACGACAGTACGCCGGAGGGGAAGGAGGGG
TGCTCGACGGAGCGCCGACGGCAGTACACAGCACGCGGAACCACCGTCCTTTGCGGGTCG
ACCGACACCGCCGAGGAGGTGAAGCGCAAGAGCCGCATCATCGTCGCCATTCGCAAGCGT
CCGCTCAGCGCCGGGGAGCAGACGAACGGCTTCACGGACATCATGGACGCCGACAACAAC
GGCGAGATTGTGCTGAAGGAGCCAAAGGTGAAGGTCGACCTCCGCAAGTACACCCACGTG
CACCGCTTCTTCTTCGACGAGGTTTTCGACGAGGCGTGCGACAACGTCGACGTGTACAAC
CGCGCTGCCCGCGCGCTGATCGACACCGTCTTCGACGGCGGCTGCGCGACATGCTTCGCC
TATGGGCAGACAGGGAGCGGCAAGACACACACGATGCTCGGCAAGGGCCCCGAGCCGGGC
CTGTACGCACTCGCCGCCAAAGACATGTTTGACCGCCTCACGAGCGACACGCGCATCGTT
GTTTCCTTTTACGAGATCTACAGCGGGAAGCTCTTTGACTTGCTGAACGGCCGGCGACCA
CTGCGAGCCCTCGAGGACGACAAGGGGAGGGTGAACATCCGCGGCCTCACCGAACACTGC
TCTACCAGCGTGGAGGACCTCATGACGATCATCGACCAGGGCAGCGGCGTTCGCAGCTGC
GGCTCCACCGGCGCCAACGACACGAGCTCCCGCTCCCACGCCATTCTCGAGATCAAGCTC
AAGGCGAAACGGACGTCGAAGCAGAGCGGCAAGTTCACATTCATCGACCTCGCTGGAAGC
GAGCGCGGCGCCGACACGGTGGATTGCGCGCGACAGACACGCCTCGAAGGGGCGGAGATT
AACAAGAGCCTACTCGCTCTGAAGGAGTGCATTCGTTTTTTAGATCAGAACAGGAAGCAC
GTCCCGTTCCGCGGCTCGAAGCTGACTGAGGTGCTCCGCGACTCGTTTATCGGCAACTGC
CGCACGGTGATGATCGGCGCCGTCTCTCCGTCCAACAACAATGCCGAGCACACGCTGAAC
ACGTTGCGCTACGCCGATCGCGTCAAGGAGCTGAAGCGCAACGCCACGGAGCGGCGCACC
GTGTGCGTGCCCAACGACCAGGAAGAGGCCTTCTTTGACACGACCGAGAGCAGGCCACCG
TCGCGGAGGACGACAACTCGGCTTTCTGCGGCCGCCCCGCTTTTCTCCGGCACTTCGACG
GCTGCCCCAGCATGTAAAAGCACGTTGCTCAGCAGCCGCTCCGTCAACACACTCTCGCCG
TCGTCGCAGGGCAAGTCGACTCTCGTCACCCCGAAGCCACTGTCGCGCGATCGGACTCCG
GACATGGTGTGCGCTAAGCGGCCCCGCGACTCAGACCGAAGCGGCGAAGACGAAGTGGTG
GCGCGGCCGAGTGGGCGCCCAAGCTTCAAGCGCTTCGAGGGCGGCGCCGAGCTCGTGGCG
GCCCAGCGCAGTCGTGTCATTGACCAATACAACGCCTACCTCGAGACGGACATGAACTGT
ATCAAGGAGGAGTACCAGGTGAAGTACGACGCAGAGCAGATGAACGCCAACACGCGCACC
TTTGTCGAGCGCGCACGCCTGCTGGTGAGCGAGAAGCGGCGCGCGATGGAGTCCTTCCTA
ACGCAGCTGGACGAGCTCGATAAGATCGCGCAGCAGGTCGCCAGCATCACCGCCTTTCAG
CAGCACCTGCCGCCAACG

3.2.2 The function read.alignment()

Aligned sequence data are very important in evolutionary studies, in this rep-
resentation all vertically aligned positions are supposed to be homologous, that
is sharing a common ancestor. This is a mandatory starting point for compar-
ative studies. There is a function in seqinR called read.alignment() to read
aligned sequences data from various formats (mase, clustal, phylip, fasta or
msf) produced by common external programs for multiple sequence alignment.

example(read.alignment)

rd.lgn mase.res <- read.alignment(file = system.file("sequences/test.mase", package = "seqinr"),
rd.lgn format = "mase")

rd.lgn clustal.res <- read.alignment(file = system.file("sequences/test.aln", package = "seqinr"),
rd.lgn format="clustal")

3.2. IMPORTING ALIGNED SEQUENCE DATA 45

rd.lgn phylip.res <- read.alignment(file = system.file("sequences/test.phylip", package = "seqinr"),
rd.lgn format = "phylip")

rd.lgn msf.res <- read.alignment(file = system.file("sequences/test.msf", package = "seqinr"),
rd.lgn format = "msf")

rd.lgn fasta.res <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
rd.lgn format = "fasta")

rd.lgn #
rd.lgn # Quality control routine sanity checks:
rd.lgn #
rd.lgn
rd.lgn data(mase); stopifnot(identical(mase, mase.res))

rd.lgn data(clustal); stopifnot(identical(clustal, clustal.res))

rd.lgn data(phylip); stopifnot(identical(phylip, phylip.res))

rd.lgn data(msf); stopifnot(identical(msf, msf.res))

rd.lgn data(fasta); stopifnot(identical(fasta, fasta.res))

3.2.3 A simple example with the louse-gopher data

Let’s give an example. The gene coding for the mitochondrial cytochrome ox-
idase I is essential and therefore often used in phylogenetic studies because of
its ubiquitous nature. The following two sample tests of aligned sequences of
this gene (extracted from ParaFit [50]), are distributed along with the seqinR
package:

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")
louse$nam

[1] "gi|548117|gb|L32667.1|GYDCYTOXIB Geomydoecus chapini mitochondrial cytochrome oxidase I gene, partial cds"
[2] "gi|548119|gb|L32668.1|GYDCYTOXIC Geomydoecus cherriei mitochondrial cytochrome oxidase I gene, partial cds"
[3] "gi|548121|gb|L32669.1|GYDCYTOXID Geomydoecus costaricensis mitochondrial cytochrome oxidase I gene, partial cds"
[4] "gi|548125|gb|L32671.1|GYDCYTOXIF Geomydoecus ewingi mitochondrial cytochrome oxidase I gene, partial cds"
[5] "gi|548127|gb|L32672.1|GYDCYTOXIG Geomydoecus geomydis mitochondrial cytochrome oxidase I gene, partial cds"
[6] "gi|548131|gb|L32675.1|GYDCYTOXII Geomydoecus oklahomensis mitochondrial cytochrome oxidase I gene, partial cds"
[7] "gi|548133|gb|L32676.1|GYDCYTOXIJ Geomydoecus panamensis mitochondrial cytochrome oxidase I gene, partial cds"
[8] "gi|548137|gb|L32678.1|GYDCYTOXIL Geomydoecus setzeri mitochondrial cytochrome oxidase I gene, partial cds"

gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")
gopher$nam

[1] "gi|548223|gb|L32683.1|PPGCYTOXIA Geomys breviceps mitochondrial cytochrome oxidase I gene, partial cds"
[2] "gi|548197|gb|L32686.1|OGOCYTOXIA Orthogeomys cavator mitochondrial cytochrome oxidase I gene, partial cds"
[3] "gi|548199|gb|L32687.1|OGOCYTOXIB Orthogeomys cherriei mitochondrial cytochrome oxidase I gene, partial cds"
[4] "gi|548201|gb|L32691.1|OGOCYTOXIC Orthogeomys underwoodi mitochondrial cytochrome oxidase I gene, partial cds"
[5] "gi|548203|gb|L32692.1|OGOCYTOXID Orthogeomys hispidus mitochondrial cytochrome oxidase I gene, partial cds"
[6] "gi|548229|gb|L32693.1|PPGCYTOXID Geomys bursarius mitochondrial cytochrome oxidase I gene, partial cds"
[7] "gi|548231|gb|L32694.1|PPGCYTOXIE Geomys bursarius mitochondrial cytochrome oxidase I gene, partial cds"
[8] "gi|548205|gb|L32696.1|OGOCYTOXIE Orthogeomys heterodus mitochondrial cytochrome oxidase I gene, partial cds"

The aligned sequences are now imported in your environment. The 8
genes of the first sample are from various species of louse (insects parasitics on
warm-blooded animals) and the 8 genes of the second sample are from their
corresponding gopher hosts (a subset of rodents), see figure 3.3 :

l.names <- readLines(system.file("sequences/louse.names", package = "seqinr"))
l.names

[1] "G.chapini " "G.cherriei " "G.costaric " "G.ewingi " "G.geomydis "
[6] "G.oklahome " "G.panamens " "G.setzeri "

g.names <- readLines(system.file("sequences/gopher.names", package = "seqinr"))
g.names

[1] "G.brevicep " "O.cavator " "O.cherriei " "O.underwoo " "O.hispidus "
[6] "G.burs1 " "G.burs2 " "O.heterodu"

46 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

Figure 3.3: Louse (left) and gopher (right). Images are from the wikipedia
(http://www.wikipedia.org/). The picture of the chewing louse Damalinia
limbata found on Angora goats was taken by Fiorella Carnevali (ENEA, Italy).
The gopher drawing is from Gustav Mützel, Brehms Tierleben, Small Edition
1927.

SeqinR has very few methods devoted to phylogenetic analyses but many
are available in the ape package [70]. This allows for a very fine tuning of the
graphical outputs of the analyses thanks to the power of the facilities. For
instance, a natural question here would be to compare the topology of the tree
of the hosts and their parasites to see if we have congruence between host and
parasite evolution. In other words, we want to display two phylogenetic trees
face to face. This would be tedious with a program devoted to the display of a
single phylogenetic tree at time, involving a lot of manual copy/paste operations,
hard to reproduce, and then boring to maintain with data updates.

How does it looks under ? First, we need to infer the tree topologies from
data. Let’s try as an illustration the famous neighbor-joining tree estimation
of Saitou and Nei [82] with Jukes and Cantor’s correction [40] for multiple
substitutions.

library(ape)
louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")
gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")
l <- nj(louse.JC)
g <- nj(gopher.JC)

Now we have an estimation for illustrative purposes of the tree topology for
the parasite and their hosts. We want to plot the two trees face to face, and for
this we must change R graphical parameters. The first thing to do is to save
the current graphical parameter settings so as to be able to restore them later:

op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical pa-
rameters are not all settable, we just want to save those we can change at will.
Now, we can play with graphics :

g$tip.label <- paste(1:8, g.names)
l$tip.label <- paste(1:8, l.names)
layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))
par(mar=c(2,1,2,1))
plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

http://www.wikipedia.org/

3.2. IMPORTING ALIGNED SEQUENCE DATA 47

main = "gopher (host)", cex.main = 2)
plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,
main = "louse (parasite)", cex.main = 2)

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)

1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

We now restore the old graphical settings that were previously saved:

par(op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd() command, create a text file called
essai.r with your favourite text editor, and copy/paste the previous com-
mands, that is :

louse <- read.alignment(system.file("sequences/louse.fasta", package = "seqinr"), format = "fasta")

gopher <- read.alignment(system.file("sequences/gopher.fasta", package = "seqinr"), format = "fasta")

l.names <- readLines(system.file("sequences/louse.names", package = "seqinr"))

g.names <- readLines(system.file("sequences/gopher.names", package = "seqinr"))

library(ape)

louse.JC <- dist.dna(as.DNAbin(louse), model = "JC69")

gopher.JC <- dist.dna(as.DNAbin(gopher), model = "JC69")

l <- nj(louse.JC)

g <- nj(gopher.JC)

g$tip.label <- paste(1:8, g.names)

l$tip.label <- paste(1:8, l.names)

layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))

par(mar=c(2,1,2,1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)

plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to console to
enter the command :

source("essai.r")

This should reproduce the previous face-to-face phylogenetic trees in your
graphical device. Now, your boss is unhappy with working with the Jukes and

Cantor’s model [40] and wants you to use the Kimura’s 2-parameters distance
[45] instead. Go back to the text editor to change model = "JC69" by model

= "K80", save the file, and in the console source("essai.r") again, you
should obtain the following graph :

48 CHAPTER 3. IMPORTING SEQUENCES FROM FLAT FILES

gopher (host)

1 G.brevicep

2 O.cavator

3 O.cherriei

4 O.underwoo

5 O.hispidus

6 G.burs1

7 G.burs2

8 O.heterodu

louse (parasite)
1 G.chapini

2 G.cherriei

3 G.costaric

4 G.ewingi

5 G.geomydis

6 G.oklahome

7 G.panamens

8 G.setzeri

Now, something even worst, there was a error in the aligned sequence set:
the first base in the first sequence in the file louse.fasta is not a C but a T.
To locate the file on your system, enter the following command:

system.file("sequences/louse.fasta", package = "seqinr")

[1] "/Users/lobry/seqinr/pkg.Rcheck/seqinr/sequences/louse.fasta"

Open the louse.fasta file in your text editor, fix the error, go back to
the console to source("essai.r") again. That’s all, your graph is now
consistent with the updated dataset.

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Thu Jun 2 15:58:57 2016

• LATEX compilation time was: June 2, 2016

CHAPTER 4

Importing sequences from
ACNUC databases

Charif, D. Lobry, J.R.

Introduction

As a rule of thumb, after compression one nucleotide needs one octet of disk
space storage (because you need also the annotations corresponding to the se-
quences), so that most likely you won’t have enough space on your computer
to work with a local copy of a complete DNA database. The idea is to import
under only the subset of sequences you are interested in. This is done in
three steps:

1. Choose the bank you want to work with.

2. Select the sequences you are interested in.

3. Retrieve sequences from server into your workspace.

We now give a full example of those three steps under the ACNUC system
[22, 23, 30, 28, 29].

4.1 Choose a bank

Select the database from which you want to extract sequences with the choosebank()
function. This function initiates a remote access to an ACNUC database. Called
without arguments, choosebank() returns the list of available databases:

choosebank()

[1] "genbank" "embl" "emblwgs" "swissprot"
[5] "ensembl" "hogenom" "hogenomdna" "hovergendna"
[9] "hovergen" "hogenom5" "hogenom5dna" "hogenom4"
[13] "hogenom4dna" "homolens" "homolensdna" "hobacnucl"

49

50 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

[17] "hobacprot" "phever2" "phever2dna" "refseq"
[21] "greviews" "bacterial" "archaeal" "protozoan"
[25] "ensprotists" "ensfungi" "ensmetazoa" "ensplants"
[29] "ensemblbacteria" "mito" "polymorphix" "emglib"
[33] "refseqViruses" "ribodb" "taxodb"

Biological sequence databases are fast moving targets, and for publication
purposes it is recommended to specify on which release you were working on
when you made the job. To get more informations about available databases on
the server, just set the infobank parameter to TRUE. For instance, here is the
result for the three first databases on the default server at the compilation time
(June 2, 2016) of this document:

choosebank(infobank = TRUE)[1:3,]

bank status
1 genbank on
2 embl on
3 emblwgs on

info
1 GenBank Release 213 (15 April 2016) Last Updated: May 22, 2016
2 EMBL Nucleotide Archive Release 127 (March 2016) Last Updated: May 21, 2016
3 EMBL Whole Genome Shotgun sequences Release 127 (March 2016)

Note that there is a status column because a database could be unavailable
for a while during updates. If you try call choosebank(bank = "bankname")

when the bank called bankname is off from server, you will get an explicit error
message stating that this bank is temporarily unavailable, for instance:

res <- try(choosebank("off"))
cat(res)

Error in acnucopen(bank, socket) :
Database with name -->off<-- is currently off for maintenance, please try again later.

Some special purpose databases are not listed by default. These are tagged
databases that are only listed if you provide an explicit tagbank argument to the
choosebank() function. Of special interest for teaching purposes is the TP tag,
an acronym for Travaux Pratiques which means ”practicals”, and corresponds
to frozen databases so that you can set up a practical whose results are stable
from year to year. Currently available frozen databases at the default server
are:

choosebank(tagbank = "TP", infobank = TRUE)

bank status info
1 trypano on frozen trypano database
2 emblTP on frozen EMBL release

Now, if you want to work with a given database, say GenBank, just call
choosebank() with "genbank" as its first argument:

mybank <- choosebank("genbank")
str(mybank)

List of 9
$ socket :Classes 'sockconn', 'connection' atomic [1:1] 5
.. ..- attr(*, "conn_id")=<externalptr>
$ bankname: chr "genbank"
$ banktype: chr "GENBANK"
$ totseqs : num 2.26e+08
$ totspecs: num 1585615
$ totkeys : num 69548858
$ release : chr " GenBank Release 213 (15 April 2016) Last Updated: May 22, 2016"
$ status :Class 'AsIs' chr "on"
$ details : chr [1:4] " **** ACNUC Data Base Content **** " " GenBank Release 213 (15 April 2016) Last Updated: May 22, 2016" "212,493,047,396 bases; 194,219,757 sequences; 31,530,545 subseqs; 876,736 refers." "Software M. Gouy, Lab. Biometrie et Biologie Evolutive, Universite Lyon I "

4.1. CHOOSE A BANK 51

closebank()

The components of mybank means that in the database called genbank at
the compilation time of this document there were 225,750,303 sequences from
1,585,615 species and a total of 69,548,858 keywords. The status of the bank
was on, and the release information was GenBank Release 213 (15 April

2016) Last Updated: May 22, 2016. For specialized databases, some rele-
vant informations are also given in the details component.

As from seqinR 1.0-3, the result of the choosebank() function is automat-
ically stored in a variable named banknameSocket in the .seqinrEnv environ-
ment, so that if no socket argument is given to the query() function, the last
opened database will be used by default for your requests. This is just a matter
of convenience so that you don’t have to explicitly specify the details of the
socket connection when working with the last opened database. You have, how-
ever, full control of the process since choosebank() returns (invisibly) all the
required details. There is no trouble to open simultaneously many databases.
You are just limited by the number of simultaneous connections your build of

is allowed1.

For advanced users who may wish to access to more than one database at
time, a good advice is to close them with the function closebank() as soon
as possible so that the maximum number of simultaneous connections is never
reached. In the example below, we want to display the number of taxa (i.e.
the number of nodes) in the species taxonomy associated with each available
database (including frozen databases). For this, we loop over available databases
and close them as soon as the information has been retrieved.

banks <- c(choosebank(), choosebank(tagbank = "TP"))
nbanks <- length(banks)
ntaxa <- numeric(nbanks) # pre-allocate
for(i in seq_len(nbanks)){
bkopenres <- try(choosebank(banks[i]))
if(inherits(bkopenres, "try-error")){
ntaxa[i] <- NA

} else {
ntaxa[i] <- as.numeric(bkopenres$totspecs)
closebank()

}
}
names(ntaxa) <- banks

ntaxa <- ntaxa[!is.na(ntaxa)]
dotchart(log10(ntaxa[order(ntaxa)]), pch = 19,
main = "Number of taxa in available databases",
xlab = "Log10(number of taxa)")

1As from 2.4.0 he maximum number of open connections has been increased from 50 to
128. Note also that there is a very convenient function called closeAllConnections() in the

base package if you want to close all open connections at once.

52 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

protozoan
ensprotists
ensplants
ensmetazoa
homolens
homolensdna
ensembl
archaeal
emglib
ensfungi
hogenom4dna
hogenom4
hogenom5dna
refseqViruses
hogenom5
mito
greviews
hogenomdna
hogenom
phever2dna
phever2
ribodb
hobacprot
ensemblbacteria
bacterial
refseq
polymorphix
hobacnucl
hovergendna
hovergen
emblwgs
emblTP
swissprot
genbank
embl
taxodb

2 3 4 5 6

Number of taxa in available databases

Log10(number of taxa)

4.2 Make your query

For this section, set up the default bank to GenBank, so that you don’t have
to provide the sockets details for the query() function. We set the verbose

argument to TRUE, just for the fun2, this is not really usefull here:

choosebank("genbank", verbose = TRUE)

Verbose mode is on, parameter values are:
bank = "genbank"
host = "pbil.univ-lyon1.fr"
port = 5558
timeout = 5 seconds
infobank = FALSE
tagbank = NA

I'm ckecking that sockets are available on this build of R...
... yes, sockets are available on this build of R.
I'm trying to open the socket connection...
... yes, I was able to open the socket connection.
I'm trying to read answer from server...
... answer from server is: OK acnuc socket started
clientid(): sending clientid&id=seqinr_3.0-11
... answer from server is: code=0

2This option is however usefull for trouble shooting.

4.2. MAKE YOUR QUERY 53

parser.socket received: -->code=0<--
I'm trying to open the bank from server...
... and everything is OK up to now.
I'm trying to get information on the bank...
... and everything is OK up to now.

Then, you have to say what you want, that is to compose a query to select
the subset of sequences you are interested in. The way to do this is docu-
mented under ?query, we just give here a simple example (more details are
given in chapter 5 page 61). In the query below, we want to select all the cod-
ing sequences (t=cds) from cat (AND sp=felis catus) that are not (AND NOT)
partial sequences (k=partial). We want the result to be stored in an object
called completeCatsCDS.

Felis catus. Source: wikipedia

completeCatsCDS <- query("completeCatsCDS", "sp=felis catus AND t=cds AND NOT k=partial")

Now, there is in the workspace an object called completeCatsCDS, which
does not contain the sequences themselves but the sequence names (and various
relevant informations such as the genetic code and the frame) that fit the query.
They are stored in the req component of the object, let’s see the name of the
first ten of them:

getName(completeCatsCDS$req[1:10])

[1] "AB000483.PE1" "AB000484.PE1" "AB000485.PE1" "AB003366"
[5] "AB003367" "AB004237" "AB004238" "AB009279.PE1"
[9] "AB009280.PE1" "AB010872.UGT1A1"

The first sequence that fit our request is AB000483.PE1, the second one is
AB000484.PE1, and so on. Note that the sequence name may have an extension,
this corresponds to subsequences, a specificity of the ACNUC system that al-
lows to handle easily a subsequence with a biological meaning, typically a gene.
The list of available subsequences in a given database is given by the function
getType(), for example the list of available subsequences in GenBank is given
in table 4.1.

Type Description
1 CDS .PE protein coding region
2 LOCUS sequenced DNA fragment
3 MISC RNA .RN other structural RNA coding region
4 NCRNA .NC non-protein-coding gene other than rRNA and tRNA
5 RRNA .RR mature ribosomal RNA
6 TMRNA .TM transfer messenger RNA
7 TRNA .TR mature transfer RNA

Table 4.1: Available subsequences in GenBank Release 213 (15 April 2016) Last
Updated: May 22, 2016

The component call of completeCatsCDS keeps automatically a trace of
the way you have selected the sequences:

completeCatsCDS$call

query(listname = "completeCatsCDS", query = "sp=felis catus AND t=cds AND NOT k=partial")

At this stage you can quit your session saving the workspace image. The
next time an session is opened with the workspace image restored, there

54 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

will be an object called completeCatsCDS, and looking into its call component
will tell you that it contains the names of complete coding sequences from Felis
catus.

In practice, queries for sequences are rarely done in one step and are more
likely to be the result of an iterative, progressively refining, process. An impor-
tant point is that a list of sequences can be re-used. For instance, we can re-use
completeCatsCDS to get only the list of sequences that were published in 2004:

ccc2004 <- query("ccc2004", "completeCatsCDS AND y=2004")
length(ccc2004$req)

[1] 60

ccc2004$nelem

[1] 60

Hence, there were 60 complete coding sequences published in 2004 for Felis
catus in GenBank.

As from release 1.0-3 of the seqinR package, there is new parameter virtual
which allows to disable the automatic retrieval of information for all list ele-
ments. This is interesting for list with many elements, for instance :

allcds <- query("allcds", "t=cds", virtual = TRUE)
allcds$nelem

[1] 34260201

There are therefore 34,260,201 coding sequences in this version of GenBank.
It would be long to get all the informations for the elements of this list, so we
have set the parameter virtual to TRUE and the req component of the list has
not been documented:

allcds$req

[1] NA

However, the list can still be re-used3, for instance we may extract from this
list all the sequences from, say, Mycoplasma genitalium:

small <- query("small", "allcds AND sp=mycoplasma genitalium", virtual = TRUE)
small$nelem

[1] 3382

There are then 3,382 elements in the list small, so that we can safely repeat
the previous query without asking for a virtual list:

small <- query("small", "allcds AND sp=mycoplasma genitalium")
getName(small$req[1:10])

[1] "AB919117" "AB919118" "AB919119" "AB919120" "AB919121" "AY191424"
[7] "AY386807" "AY386808" "AY386809" "AY386810"

Here are some illustrations of using virtual list to answer simple questions
about the current GenBank release.

Man. How many sequences are available for our species?

man <- query("man","sp=homo sapiens",virtual=T)
man$nelem

3of course, as long as the socket connection with the server has not been lost: virtual lists
details are only known by the server.

4.2. MAKE YOUR QUERY 55

[1] 23519997

There are 23,519,997 sequences from Homo sapiens.

Sex. How many sequences are annotated with a keyword starting by sex?

sex <- query("sex","k=sex@",virtual=T)
sex$nelem

[1] 3577

There are 3,577 such sequences.

tRNA. How many complete tRNA sequences are available?

trna <- query("trna","t=trna AND NOT k=partial",virtual=T)
trna$nelem

[1] 1810833

There are 1,810,833 complete tRNA sequences.

Nature vs. Science. In which journal were the more sequences published?

nature <- query("nature","j=nature",virtual=T)
nature$nelem

[1] 2645373

science <- query("science","j=science",virtual=T)
science$nelem

[1] 2244003

There are 2,645,373 sequences published in Nature and 2,244,003 se-
quences published in Science, so that the winner is Nature.

Smith. How many sequences have Smith (last name) as author?

smith <- query("smith","au=smith",virtual=T)
smith$nelem

[1] 6433901

There are 6,433,901 such sequences.

YK2. How many sequences were published after year 2000 (included)?

yk2 <- query("yk2","y>2000",virtual=T)
yk2$nelem

[1] 182398606

There are 182,398,606 sequences published after year 2000.

Organelle contest. Do we have more sequences from chloroplast genomes or
from mitochondion genomes?

chloro <- query("chloro","o=chloroplast",virtual=T)
chloro$nelem

[1] 870722

56 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

mito <- query("mito","o=mitochondrion",virtual=T)
mito$nelem

[1] 3479548

There are 870,722 sequences from chloroplast genomes and 3,479,548

sequences from mitochondrion genomes, so that the winner is mitochon-
drion.

closebank()

4.3 Extract sequences of interest

4.3.1 Introduction

For this section we set up the bank to emblTP which is a frozen subset of EMBL
database to allow for the reproducibility of results.

choosebank("emblTP")

We suppose that the sequences we are interested in are all the complete
coding sequences from Felis catus :

completeCatsCDS <- query("completeCatsCDS", "sp=felis catus AND t=cds AND NOT k=partial")
(nseq <- completeCatsCDS$nelem)

[1] 257

Thus, there were 257 complete CDS from Felis catus in this release of EMBL.
The sequences are obtained with the function getSequence(). For example,

the first 50 nucleotides of the first sequence of our request are:

myseq <- getSequence(completeCatsCDS$req[[1]])
myseq[1:50]

[1] "a" "t" "g" "a" "c" "c" "a" "a" "c" "a" "t" "t" "c" "g" "a" "a" "a" "a"
[19] "t" "c" "a" "c" "a" "c" "c" "c" "c" "c" "t" "t" "a" "c" "c" "a" "a" "a"
[37] "a" "t" "t" "a" "t" "t" "a" "a" "t" "c" "a" "c" "t" "c"

They can also be coerced as string of character with the function c2s():

c2s(myseq[1:50])

[1] "atgaccaacattcgaaaatcacacccccttaccaaaattattaatcactc"

We can also use the argument as.string to retrive sequences directly as
strings:

substr(getSequence(completeCatsCDS$req[[1]], as.string = TRUE), 1, 50)

[1] "atgaccaacattcgaaaatcacacccccttaccaaaattattaatcactc"

Note that what is done by getSequence() is much more complex than a
simple substring extraction because subsequences of biological interest are not
necessarily contiguous, nor on the same DNA strand, nor even from the same
entry.

4.3. EXTRACT SEQUENCES OF INTEREST 57

4.3.2 Extracting sequences with trans-splicing

Consider for instance the following coding sequence from sequence AE003734:

trs <- query("trs","N=AE003734.PE35")
getAnnot(trs$req[[1]]) -> annots
cat(annots, sep="\n")

FT CDS join(complement(153944..154157),complement(153727..153866),
FT complement(152185..153037),138523..138735,138795..138955)
FT /codon_start=1
FT /db_xref="FLYBASE:FBgn0002781"
FT /db_xref="GOA:Q86B86"
FT /db_xref="TrEMBL:Q86B86"
FT /note="mod(mdg4) gene product from transcript CG32491-RZ;
FT trans splicing"
FT /gene="mod(mdg4)"
FT /product="CG32491-PZ"
FT /locus_tag="CG32491"
FT /protein_id="AAO41581.1"
FT /translation="MADDEQFSLCWNNFNTNLSAGFHESLCRGDLVDVSLAAEGQIVKA
FT HRLVLSVCSPFFRKMFTQMPSNTHAIVFLNNVSHSALKDLIQFMYCGEVNVKQDALPAF
FT ISTAESLQIKGLTDNDPAPQPPQESSPPPAAPHVQQQQIPAQRVQRQQPRASARYKIET
FT VDDGLGDEKQSTTQIVIQTTAAPQATIVQQQQPQQAAQQIQSQQLQTGTTTTATLVSTN
FT KRSAQRSSLTPASSSAGVKRSKTSTSANVMDPLDSTTETGATTTAQLVPQQITVQTSVV
FT SAAEAKLHQQSPQQVRQEEAEYIDLPMELPTKSEPDYSEDHGDAAGDAEGTYVEDDTYG
FT DMRYDDSYFTENEDAGNQTAANTSGGGVTATTSKAVVKQQSQNYSESSFVDTSGDQGNT
FT EAQVTQHVRNCGPQMFLISRKGGTLLTINNFVYRSNLKFFGKSNNILYWECVQNRSVKC
FT RSRLKTIGDDLYVTNDVHNHMGDNKRIEAAKAAGMLIHKKLSSLTAADKIQGSWKMDTE
FT GNPDHLPKM"

To get the coding sequence manually you would have join 5 different pieces
from AE003734 and some of them are in the complementary strand. With
getSequence() you don’t have to think about this. Just make a query with the
sequence name:

transspliced <- query("transspliced", "N=AE003734.PE35")
length(transspliced$req)

[1] 1

getName(transspliced$req[[1]])

[1] "AE003734.PE35"

Ok, now there is in your workspace an object called transspliced which
req component is of length one (because you have asked for just one sequence)
and the name of the single element of the req component is AE003734.PE35
(because this is the name of the sequence you wanted). Let see the first 50 base
of this sequence:

getSequence(transspliced$req[[1]])[1:50]

[1] "a" "t" "g" "g" "c" "g" "g" "a" "c" "g" "a" "c" "g" "a" "g" "c" "a" "a"
[19] "t" "t" "c" "a" "g" "c" "t" "t" "g" "t" "g" "c" "t" "g" "g" "a" "a" "c"
[37] "a" "a" "c" "t" "t" "c" "a" "a" "c" "a" "c" "g" "a" "a"

All the complex trans-splicing operations have been done here. You can
check that there is no in-frame stop codons4 with the getTrans() function to
translate this coding sequence into protein:

getTrans(transspliced$req[[1]])[1:50]

[1] "M" "A" "D" "D" "E" "Q" "F" "S" "L" "C" "W" "N" "N" "F" "N" "T" "N" "L"
[19] "S" "A" "G" "F" "H" "E" "S" "L" "C" "R" "G" "D" "L" "V" "D" "V" "S" "L"
[37] "A" "A" "E" "G" "Q" "I" "V" "K" "A" "H" "R" "L" "V" "L"

table(getTrans(transspliced$req[[1]]))

4Stop codons are represented by the character * when translated into protein.

58 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

* A C D E F G H I K L M N P Q R S T V W Y
1 47 7 33 25 15 29 12 20 26 33 12 27 25 52 19 48 47 34 3 12

In a more graphical way:

aacount <- table(getTrans(transspliced$req[[1]]))
aacount <- aacount[order(aacount)]
names(aacount) <- aaa(names(aacount))
dotchart(aacount, pch = 19, xlab = "Stop and amino-acid counts",
main = "There is only one stop codon in AE003734.PE35")
abline(v=1, lty = 2)

Stp
Trp
Cys
His
Met
Tyr
Phe
Arg
Ile
Glu
Pro
Lys
Asn
Gly
Asp
Leu
Val
Ala
Thr
Ser
Gln

0 10 20 30 40 50

There is only one stop codon in AE003734.PE35

Stop and amino−acid counts

Note that the relevant variant of the genetic code was automatically set
up during the translation of the sequence into protein. This is because the
transspliced$req[[1]] object belongs to the SeqAcnucWeb class:

class(transspliced$req[[1]])

[1] "SeqAcnucWeb"

Therefore, when you are using the getTrans() function, you are automati-
cally redirected to the getTrans.SeqAcnucWeb() function which knows how to
take into account the relevant frame and genetic code for your coding sequence.

4.3.3 Extracting sequences from many entries

Consider the following CDS from M19233:

multi <- query("multi", "AC=M19233 AND T=CDS")
cat(getAnnot(multi$req[[1]]), sep = "\n")

4.3. EXTRACT SEQUENCES OF INTEREST 59

FT CDS join(M17883.1:988..1155,M17883.1:1504..1650,
FT M17883.1:2451..2648,M17883.1:3098..3328,625..758)
FT /codon_start=1
FT /db_xref="GOA:Q13763"
FT /db_xref="TrEMBL:Q13763"
FT /partial
FT /gene="AMY1A"
FT /product="alpha-amylase"
FT /protein_id="AAA57345.1"
FT /translation="MKLFWLLFTIGFCWAQYSSNTQQGRTSIVHLFEWRWVDIALECER
FT YLAPKGFGGVQVSPPNENVAIHNPFRPWWERYQPVSYKLCTRSGNEDEFRNMVTRCNNV
FT GVRIYVDAVINHMCGNAVSAGTSSTCGSYFNPGSRDFPAVPYSGWDFNDGKCKTGSGDI
FT ENYNDATQVRDCRLSGLLDPALGKDYVRSKIAEYMNHLIDIGVAGFRIDASKHMWPGDI
FT KAILDKLHNLNSNWFPEGSKPFIYQEVIDLGGEPIKSSDYFGNGRVTEFKYGAKLGTVI
FT RKWTGEKMSYL"

The CDS here is obtained by joining pieces from different entries, but this
is not a problem:

getTrans(multi$req[[1]])

[1] "M" "K" "L" "F" "W" "L" "L" "F" "T" "I" "G" "F" "C" "W" "A" "Q" "Y" "S"
[19] "S" "N" "T" "Q" "Q" "G" "R" "T" "S" "I" "V" "H" "L" "F" "E" "W" "R" "W"
[37] "V" "D" "I" "A" "L" "E" "C" "E" "R" "Y" "L" "A" "P" "K" "G" "F" "G" "G"
[55] "V" "Q" "V" "S" "P" "P" "N" "E" "N" "V" "A" "I" "H" "N" "P" "F" "R" "P"
[73] "W" "W" "E" "R" "Y" "Q" "P" "V" "S" "Y" "K" "L" "C" "T" "R" "S" "G" "N"
[91] "E" "D" "E" "F" "R" "N" "M" "V" "T" "R" "C" "N" "N" "V" "G" "V" "R" "I"
[109] "Y" "V" "D" "A" "V" "I" "N" "H" "M" "C" "G" "N" "A" "V" "S" "A" "G" "T"
[127] "S" "S" "T" "C" "G" "S" "Y" "F" "N" "P" "G" "S" "R" "D" "F" "P" "A" "V"
[145] "P" "Y" "S" "G" "W" "D" "F" "N" "D" "G" "K" "C" "K" "T" "G" "S" "G" "D"
[163] "I" "E" "N" "Y" "N" "D" "A" "T" "Q" "V" "R" "D" "C" "R" "L" "S" "G" "L"
[181] "L" "D" "P" "A" "L" "G" "K" "D" "Y" "V" "R" "S" "K" "I" "A" "E" "Y" "M"
[199] "N" "H" "L" "I" "D" "I" "G" "V" "A" "G" "F" "R" "I" "D" "A" "S" "K" "H"
[217] "M" "W" "P" "G" "D" "I" "K" "A" "I" "L" "D" "K" "L" "H" "N" "L" "N" "S"
[235] "N" "W" "F" "P" "E" "G" "S" "K" "P" "F" "I" "Y" "Q" "E" "V" "I" "D" "L"
[253] "G" "G" "E" "P" "I" "K" "S" "S" "D" "Y" "F" "G" "N" "G" "R" "V" "T" "E"
[271] "F" "K" "Y" "G" "A" "K" "L" "G" "T" "V" "I" "R" "K" "W" "T" "G" "E" "K"
[289] "M" "S" "Y" "L"

table(aaa(getTrans(multi$req[[1]])))

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr
15 16 19 17 8 7 14 28 6 17 18 16 6 15 14 21 12 10 14
Val
19

There is no stop codon here because the sequence is partial. If you are
experiencing a strong closure issue here, just close the bank:

closebank()

Feeling better now ?

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.0-11,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Wed Jun 1 14:33:37 2016

• LATEX compilation time was: June 2, 2016

60 CHAPTER 4. IMPORTING SEQUENCES FROM ACNUC DATABASES

CHAPTER 5

The query language

Lobry, J.R.

5.1 Where to find information

The last version of the documentation for the query language is available online
at http://pbil.univ-lyon1.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE.
This documentation has been imported within the documentation of the query()
function, but the last available update is the online version. The query language
is a specificity of the ACNUC system [30, 28, 29, 27].

5.2 Case sensitivity and ambiguities resolution

The query language is case insensitive, for instance:

choosebank("emblTP")
lowercase <- query("lowercase", "sp=escherichia coli", virtual = TRUE)
uppercase <- query("uppercase", "SP=Escherichia coli", virtual = TRUE)
lowercase$nelem == uppercase$nelem

[1] TRUE

closebank()

Three operators (AND, OR, NOT) can be ambiguous because they can also
occur within valid criterion values. Such ambiguities can be solved by encapsu-
lating elementary selection criteria between escaped double quotes. For example:

choosebank("emblTP")
ambig <- query("ambig","\"sp=Beak and feather disease virus\" AND \"au=ritchie\"", virtual = T)
ambig$nelem

[1] 18

closebank()

61

http://pbil.univ-lyon1.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE

62 CHAPTER 5. THE QUERY LANGUAGE

5.3 Selection criteria

5.3.1 Introduction

Selection criteria are in the form c=something (without space before the = sign)
or list_name where list_name is a previously constructed list.

5.3.2 SP=taxon

This is used to select sequences attached to a given taxon or any other below in
the tree. The at sign @ substitutes as a wildcard character for any zero or more
characters. Here are some examples:

choosebank("emblTP")
bb <- query("bb","sp=Borrelia burgdorferi",virtual=T)
bb$nelem

[1] 1682

borrelia <- query("borrelia","sp=Borrelia",virtual=T)
borrelia$nelem

[1] 3173

closebank()

Here is an example of use of the wildcard @ to look for sapiens species:

choosebank("emblTP")
sapiens <- query("sapiens","sp=@sapiens@",virtual=T)
sapiens$nelem

[1] 2216556

sapienspecies <- query("sapienspecies","PS sapiens")
getName(sapienspecies)

[1] "HOMO SAPIENS"
[2] "HOMO SAPIENS NEANDERTHALENSIS"
[3] "HOMO SAPIENS X HUMAN PAPILLOMAVIRUS TYPE"
[4] "HOMO SAPIENS X SIMIAN VIRUS 40"
[5] "HOMO SAPIENS X HUMAN ENDOGENOUS RETROVIR"
[6] "HOMO SAPIENS X HUMAN T-CELL LYMPHOTROPIC"
[7] "HEPATITIS B VIRUS X HOMO SAPIENS"
[8] "HOMO SAPIENS X HEPATITIS B VIRUS"
[9] "HOMO SAPIENS X HUMAN IMMUNODEFICIENCY VI"
[10] "SYNTHETIC CONSTRUCT X HOMO SAPIENS"
[11] "HUMAN PAPILLOMAVIRUS X HOMO SAPIENS"
[12] "MUS SP. X HOMO SAPIENS"
[13] "HOMO SAPIENS X HUMAN PAPILLOMAVIRUS"
[14] "HOMO SAPIENS X HUMAN ADENOVIRUS TYPE 5"
[15] "HOMO SAPIENS X HERV-H/ENV62"
[16] "HOMO SAPIENS X HERV-H/ENV60"
[17] "HOMO SAPIENS X HERV-H/ENV59"
[18] "EXPRESSION VECTOR PTH-HIN X HOMO SAPIENS"
[19] "ADENO-ASSOCIATED VIRUS 2 X HOMO SAPIENS"
[20] "SIMIAN VIRUS 40 X HOMO SAPIENS"
[21] "HOMO SAPIENS X MUS MUSCULUS"
[22] "HOMO SAPIENS X INFLUENZA B VIRUS (B/LEE/"
[23] "MUS MUSCULUS X HOMO SAPIENS"
[24] "CRICETULUS GRISEUS X HOMO SAPIENS"
[25] "TRYPANOSOMA CRUZI X HOMO SAPIENS"
[26] "HOMO SAPIENS X TRYPANOSOMA CRUZI"

closebank()

5.3.3 TID=id

This is used to select sequences attached attached to a given numerical NCBI’s
taxonomy ID. For instance, the taxonomy ID for Homo sapiens neanderthalensis
is 63221:

Homo neanderthalensis. Source:
wikipedia

5.3. SELECTION CRITERIA 63

choosebank("genbank")
hsn <- query("hsn","TID=63221", virtual=T)
hsn$nelem

[1] 1358

hsnsp <- query("hsnsp","PS hsn")
getName(hsnsp)

[1] "HOMO SAPIENS NEANDERTHALENSIS"

closebank()

5.3.4 K=keyword

This is used to select sequences attached to a given keyword or any other below
in the tree. The at sign @ substitutes as a wildcard character for any zero or
more characters. Example:

choosebank("emblTP")
ecoliribprot <- query("ecoliribprot","sp=escherichia coli AND k=rib@ prot@", virtual=T)
ecoliribprot$nelem

[1] 105

closebank()

5.3.5 T=type

This is used to select sequences of specified type. The list of available type for
the currently opened database is given by function getType():

choosebank("emblTP")
getType()

sname libel
2661 CDS .PE protein coding region
2662 ID Locus entry
2663 MISC_RNA .RN other structural RNA coding region
2664 RRNA .RR Ribosomal RNA coding gene
2665 SCRNA .SC small cytoplasmic RNA
2666 SNRNA .SN small nuclear RNA
2667 TRNA .TR Transfer RNA coding gene

closebank()

For instance, to select all coding sequences from Homo sapiens we can use:

choosebank("emblTP")
hscds <- query("hscds","sp=Homo sapiens AND t=cds", virtual=T)
hscds$nelem

[1] 150513

closebank()

5.3.6 J=journal_name

This is used to select sequences published in journal specified using defined
journal code. For instance to select all sequences published in Science:

choosebank("emblTP")
allseqsfromscience <- query("allseqsfromscience","J=Science", virtual=TRUE)
allseqsfromscience$nelem

[1] 930397

closebank()

64 CHAPTER 5. THE QUERY LANGUAGE

The list of available journal code can be obtained from the readsmj() func-
tion this way:

choosebank("emblTP")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)
head(smj[!is.na(smj$nature) & smj$nature == "journal", c("sname","libel")])

sname libel
21 ABP Acta Biochim. Pol.
22 ABSTR-SOCNEUROSCI Abstr. - Soc. Neurosci.
23 ABSTRGENMEETAMSOCM Abstr. Gen. Meet. Am. Soc. Microbiol.
24 ABSTRMIDWINTERRESM Abstr. Midwinter Res. Meet. Assoc. Res. Otolaryngol.
25 ACTAAGRICSCANDAANI Acta Agric. Scand. A Anim. Sci.
26 ACTABIOCHIMBIOPHYS Acta Biochim. Biophys. Sin.

closebank()

5.3.7 R=refcode

This is used to select sequences from a given bibliographical reference specified
as jcode/volume/page. For instance, to select sequences associated with the
first publication [1] of the complete genome of Rickettsia prowazekii, we can use:

choosebank("emblTP")
rpro <- query("rpro","R=Nature/396/133")
getName(rpro)

[1] "RPDNAOMPB" "RPXX01" "RPXX02" "RPXX03" "RPXX04"

closebank()

5.3.8 AU=name

This is used to select sequences having a specified author (only last name, no
initial).

choosebank("emblTP")
Graur <- query("Graur","AU=Graur")
Graur$nelem

[1] 48

closebank()

5.3.9 AC=accession_no

This is used to select sequences attached to specified accession number. For in-
stance if we are looking for sequences attached to the accession number AY382159:

choosebank("emblTP")
ACexample <- query("ACexample","AC=AY382159")
getName(ACexample$req[[1]])

[1] "AY382159"

annotations <- getAnnot(ACexample$req[[1]])
cat(annotations, sep ="\n")

ID AY382159 standard; genomic DNA; PRO; 783 BP.
XX
AC AY382159;
XX
SV AY382159.1
XX
DT 08-OCT-2003 (Rel. 77, Created)
DT 08-OCT-2003 (Rel. 77, Last updated, Version 1)
XX
DE Borrelia burgdorferi strain FP1 OspA gene, partial cds.

5.3. SELECTION CRITERIA 65

XX
KW .
XX
OS Borrelia burgdorferi (Lyme disease spirochete)
OC Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia;
OC Borrelia burgdorferi group.
XX
RN [1]
RP 1-783
RA Hao Q., Wan K.;
RT ;
RL Submitted (03-SEP-2003) to the EMBL/GenBank/DDBJ databases.
RL Department of Lyme Spirochetosis, CDC, Beijing 102206, China
XX
FH Key Location/Qualifiers
FH
FT source 1..783
FT /db_xref="taxon:139"
FT /mol_type="genomic DNA"
FT /organism="Borrelia burgdorferi"
FT /strain="FP1"
FT CDS <1..>783
FT /codon_start=1
FT /transl_table=11
FT /product="OspA"
FT /protein_id="AAQ89576.1"
FT /translation="ALIACKQNVSSLDEKNSASVDLPGEMKVLVSKEKDKDGKYSLKAT
FT VDKLELKGTSDKNNGSGTLEGEKTDKSKAKLTISDDLSKTTFEVFKEDGKTLVSRKVSS
FT KDKTSTDEMFNEKGELSAKTMTRENGTKLEYTEMKSDGTGKTKEVLKNFTLEGRVANDK
FT VTLEVKEGTVTLSKEIAKSGEVTVALNDTNTTQATKKTGAWDSKTSTLTISVNSKKTTQ
FT LVFTKQDTITVQKYDSAGTNLEGTAVEIKTLDELKNALK"
XX
SQ Sequence 783 BP; 342 A; 124 C; 145 G; 172 T; 0 other;

closebank()

5.3.10 N=seq_name

This is used to select sequences of a given name1. Sequences names are not nec-
essarily stable, so that it’s almost always better to work with accession numbers.
Anyway, the distinction between sequence names and accession numbers is on
a vanishing way because they tend more and more to be the same thing (as in
the example just below). The use of the at sign @ to substitute as a wildcard
character for any zero or more characters is possible here.

choosebank("emblTP")
Nexample <- query("Nexample","N=AY382159")
getName(Nexample$req[[1]])

[1] "AY382159"

annotations <- getAnnot(Nexample$req[[1]])
cat(annotations, sep ="\n")

ID AY382159 standard; genomic DNA; PRO; 783 BP.
XX
AC AY382159;
XX
SV AY382159.1
XX
DT 08-OCT-2003 (Rel. 77, Created)
DT 08-OCT-2003 (Rel. 77, Last updated, Version 1)
XX
DE Borrelia burgdorferi strain FP1 OspA gene, partial cds.
XX
KW .
XX
OS Borrelia burgdorferi (Lyme disease spirochete)
OC Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia;
OC Borrelia burgdorferi group.
XX
RN [1]
RP 1-783

1 i.e. what is documented in the ID or the LOCUS field

66 CHAPTER 5. THE QUERY LANGUAGE

RA Hao Q., Wan K.;
RT ;
RL Submitted (03-SEP-2003) to the EMBL/GenBank/DDBJ databases.
RL Department of Lyme Spirochetosis, CDC, Beijing 102206, China
XX
FH Key Location/Qualifiers
FH
FT source 1..783
FT /db_xref="taxon:139"
FT /mol_type="genomic DNA"
FT /organism="Borrelia burgdorferi"
FT /strain="FP1"
FT CDS <1..>783
FT /codon_start=1
FT /transl_table=11
FT /product="OspA"
FT /protein_id="AAQ89576.1"
FT /translation="ALIACKQNVSSLDEKNSASVDLPGEMKVLVSKEKDKDGKYSLKAT
FT VDKLELKGTSDKNNGSGTLEGEKTDKSKAKLTISDDLSKTTFEVFKEDGKTLVSRKVSS
FT KDKTSTDEMFNEKGELSAKTMTRENGTKLEYTEMKSDGTGKTKEVLKNFTLEGRVANDK
FT VTLEVKEGTVTLSKEIAKSGEVTVALNDTNTTQATKKTGAWDSKTSTLTISVNSKKTTQ
FT LVFTKQDTITVQKYDSAGTNLEGTAVEIKTLDELKNALK"
XX
SQ Sequence 783 BP; 342 A; 124 C; 145 G; 172 T; 0 other;

closebank()

5.3.11 NS=taxon_name

This is used to get the number of taxon of given name, with the use of the at
sign @ to substitute as a wildcard character for any zero or more characters
possible here. For instance, we want to know how many taxon have sapiens
inside :

choosebank("emblTP")
NSexample <- query("NSexample","NS=@sapiens@")
NSexample

26 SP for NS=@sapiens@

closebank()

5.3.12 NK=keyword_name

This is used to get the number of keyword of given name, with the use of the
at sign @ to substitute as a wildcard character for any zero or more characters
possible here. For instance, we want to know how many keywords have sex
inside :

choosebank("emblTP")
NKexample <- query("NKexample","NK=@sex@")
NKexample

277 KW for NK=@sex@

closebank()

5.3.13 Y=year or Y>year or Y<year

This is used to select sequences published in a given year (Y=year), or in a
given year and after this year (Y>year), or in a given year and before this year
(Y<year).

choosebank("emblTP")
Yexample <- query("Yexample","Y=1999", virtual=TRUE)
Yexample$nelem

[1] 955274

closebank()

5.3. SELECTION CRITERIA 67

5.3.14 O=organelle

This is used to select sequences from specified organelle named following defined
code (e.g., chloroplast). The list of available organelle codes can be obtained
from the readsmj() function this way:

choosebank("genbank")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)
smj[!is.na(smj$nature) & smj$nature == "organelle", c("sname","libel")]

sname libel
5914 CHLOROPLAST Chloroplast genome
5915 CHROMATOPHORE <NA>
5916 HYDROGENOSOME <NA>
5917 MITOCHONDRION Mitochondrial genome
5918 NUCLEOMORPH Nucleomorph genome
5919 PLASTID non-green plastid genome

closebank()

To select for instance all sequences from chloroplast genome we can use:

choosebank("emblTP")
Oexample <- query("Oexample","O=chloroplast", virtual=TRUE)
Oexample$nelem

[1] 65011

closebank()

5.3.15 M=molecule

This is used to select sequences according to the chemical nature of the se-
quenced molecule2. The list of available organelle code can be obtained from
the readsmj() function this way:

choosebank("genbank")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)
smj[!is.na(smj$nature) & smj$nature == "molecule", c("sname","libel")]

sname libel
4 CRNA Sequenced molecule is complementary RNA
5 DNA Sequenced molecule is DNA
6 MRNA sequenced molecule is mRNA
7 RNA Sequenced molecule is RNA
8 RRNA sequenced molecule is rRNA
9 TRNA sequenced molecule is tRNA

closebank()

To select for instance all sequences sequenced from DNA we can use:

choosebank("emblTP")
Mexample <- query("Mexample","M=DNA", virtual=TRUE)
Mexample$nelem

[1] 7421752

closebank()

2as named in ID or LOCUS annotation records

68 CHAPTER 5. THE QUERY LANGUAGE

5.3.16 ST=status

This is used to select sequences from specified data class (EMBL) or review
level (UniProt). The list of status codes can be obtained from the readsmj()

function this way:

choosebank("embl")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)
smj[!is.na(smj$nature) & smj$nature == "status", c("sname","libel")]

sname libel
1 ANN Annotated CON data class
2 EST Expressed Sequence Tags data class
3 GSS Genome Survey Sequence data class
4 HTC High Throughput cDNA data class
5 HTG High Throughput Genome sequencing data class
6 PAT Patent data class
7 STD standard data class
8 STS Sequence Tagged Site data class
9 TPA Third Party Annotation data class
10 TSA Transcriptome Shotgun Assembly data class

closebank()
choosebank("swissprot")
nl <- readfirstrec(type = "SMJ")
smj <- readsmj(nl = nl, all.add = TRUE)
smj[!is.na(smj$nature) & smj$nature == "status", c("sname","libel")]

sname libel
1 REVIEWED Entry was reviewed and annotated by UniProtKB curators
2 UNREVIEWED Computer-annotated entry

closebank()

To select for instance all fully annotated sequences from Uniprot we can use:

choosebank("swissprot")
STexample <- query("STexample","ST=REVIEWED", virtual=TRUE)
STexample$nelem

[1] 549008

closebank()

5.3.17 F=file_name

This is used to select sequences whose names are in a given file, one name per
line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of sequence names distributed with the seqinR package:

choosebank("emblTP")
fileSQ <- system.file("sequences/bb.mne", package = "seqinr")
cat(readLines(fileSQ),sep="\n")

A04009.OSPA
A04009.OSPB
A22442
A24006
A24008
A24010
A24012
A24014
A24016
A33362
A67759.PE1
AB011063
AB011064
AB011065
AB011066
AB011067
AB035616
AB035617
AB035618
AB041949.VLSE

5.3. SELECTION CRITERIA 69

listSQ <-clfcd("listSQ", file = fileSQ, type = "SQ")
getName(listSQ)

[1] "A04009.OSPA" "A04009.OSPB" "A22442" "A24006"
[5] "A24008" "A24010" "A24012" "A24014"
[9] "A24016" "A33362" "A67759.PE1" "AB011063"
[13] "AB011064" "AB011065" "AB011066" "AB011067"
[17] "AB035616" "AB035617" "AB035618" "AB041949.VLSE"

closebank()

5.3.18 FA=file_name

This is used to select sequences whose accession numbers are in a given file, one
name per line. This is not directly implemented in seqinR, you have to use the
function crelistfromclientdata() or its short form clfcd() for this purpose.
Here is an example with a file of sequence accession numbers distributed with
the seqinR package:

choosebank("emblTP")
fileAC <- system.file("sequences/bb.acc", package = "seqinr")
cat(readLines(fileAC),sep="\n")

AY382159
AY382160
AY491412
AY498719
AY498720
AY498721
AY498722
AY498723
AY498724
AY498725
AY498726
AY498727
AY498728
AY498729
AY499181
AY500379
AY500380
AY500381
AY500382
AY500383

listAC <- clfcd("listAC", file = fileAC, type = "AC")
getName(listAC)

[1] "AY382159" "AY382160" "AY491412" "AY498719" "AY498720" "AY498721"
[7] "AY498722" "AY498723" "AY498724" "AY498725" "AY498726" "AY498727"
[13] "AY498728" "AY498729" "AY499181" "AY500379" "AY500380" "AY500381"
[19] "AY500382" "AY500383"

closebank()

5.3.19 FK=file_name

This is used to produces the list of keywords named in given file, one keyword
per line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of keywords distributed with the seqinR package:

choosebank("emblTP")
fileKW <- system.file("sequences/bb.kwd", package = "seqinr")
cat(readLines(fileKW),sep="\n")

PLASMID
CIRCULAR
PARTIAL
5'-PARTIAL
3'-PARTIAL
MOTA GENE
MOTB GENE

70 CHAPTER 5. THE QUERY LANGUAGE

DIVISION PRO
GYRB GENE
JOINING REGION
FTSA GENE
RPOB GENE
RPOC GENE
FLA GENE
DNAJ GENE
TUF GENE
PGK GENE
RUVA GENE
RUVB GENE
PROMOTER REGION

listKW <- clfcd("listKW", file = fileKW, type = "KW")
getName(listKW)

[1] "PLASMID" "CIRCULAR" "PARTIAL" "5'-PARTIAL"
[5] "3'-PARTIAL" "MOTA GENE" "MOTB GENE" "DIVISION PRO"
[9] "GYRB GENE" "JOINING REGION" "FTSA GENE" "RPOB GENE"
[13] "RPOC GENE" "FLA GENE" "DNAJ GENE" "TUF GENE"
[17] "PGK GENE" "RUVA GENE" "RUVB GENE" "PROMOTER REGION"

closebank()

5.3.20 FS=file_name

This is used to produces the list of species named in given file, one species per
line. This is not directly implemented in seqinR, you have to use the function
crelistfromclientdata() or its short form clfcd() for this purpose. Here is
an example with a file of species names distributed with the seqinR package:

choosebank("emblTP")
fileSP <- system.file("sequences/bb.sp", package = "seqinr")
cat(readLines(fileSP),sep="\n")

BORRELIA ANSERINA
BORRELIA CORIACEAE
BORRELIA PARKERI
BORRELIA TURICATAE
BORRELIA HERMSII
BORRELIA CROCIDURAE
BORRELIA LONESTARI
BORRELIA HISPANICA
BORRELIA BARBOURI
BORRELIA THEILERI
BORRELIA DUTTONII
BORRELIA MIYAMOTOI
BORRELIA PERSICA
BORRELIA RECURRENTIS
BORRELIA BURGDORFERI
BORRELIA AFZELII
BORRELIA GARINII
BORRELIA ANDERSONII
BORRELIA VALAISIANA
BORRELIA JAPONICA

listSP <- clfcd("listSP", file = fileSP, type = "SP")
getName(listSP)

[1] "BORRELIA ANSERINA" "BORRELIA CORIACEAE" "BORRELIA PARKERI"
[4] "BORRELIA TURICATAE" "BORRELIA HERMSII" "BORRELIA CROCIDURAE"
[7] "BORRELIA LONESTARI" "BORRELIA HISPANICA" "BORRELIA BARBOURI"
[10] "BORRELIA THEILERI" "BORRELIA DUTTONII" "BORRELIA MIYAMOTOI"
[13] "BORRELIA PERSICA" "BORRELIA RECURRENTIS" "BORRELIA BURGDORFERI"
[16] "BORRELIA AFZELII" "BORRELIA GARINII" "BORRELIA ANDERSONII"
[19] "BORRELIA VALAISIANA" "BORRELIA JAPONICA"

closebank()

5.3.21 list_name

A list name can be re-used, for instance:

5.4. OPERATORS 71

choosebank("emblTP")
MyFirstListName <- query("MyFirstListName", "Y=2000", virtual = TRUE)
MyFirstListName$nelem

[1] 885225

MySecondListName <- query("MySecondListName", "SP=Borrelia burgdorferi", virtual = TRUE)
MySecondListName$nelem

[1] 1682

MyThirdListName <- query("MyThirdListName", "MyFirstListName AND MySecondListName", virtual = TRUE)
MyThirdListName$nelem

[1] 131

closebank()

5.4 Operators

5.4.1 AND

This is the binary operator for the logical and: a sequence belongs to the re-
sulting list if, and only if, it is present in both operands. To select for instance
sequences from Borrelia burgdorferi that are also coding sequences we can use:

choosebank("emblTP")
ANDexample <- query("ANDexample","SP=Borrelia burgdorferi AND T=CDS", virtual=TRUE)
ANDexample$nelem

[1] 3218

closebank()

5.4.2 OR

This is the binary operator for the logical or: a sequence belongs to the resulting
list if it is present in at least one of the two operands. To select for instance
sequences from Borrelia burgdorferi or from Escherichia coli we can use:

choosebank("emblTP")
ORexample <- query("ORexample","SP=Borrelia burgdorferi OR SP=Escherichia coli", virtual=TRUE)
ORexample$nelem

[1] 28584

closebank()

5.4.3 NOT

This is the unary operator for the logical negation. To select for instance se-
quences from Borrelia burgdorferi that are not partial we can use:

choosebank("emblTP")
NOTexample <- query("NOTexample","SP=Borrelia burgdorferi AND NOT K=PARTIAL", virtual=TRUE)
NOTexample$nelem

[1] 3266

closebank()

72 CHAPTER 5. THE QUERY LANGUAGE

5.4.4 PAR

This is a unary operator to compute the list of parent sequences of a list of
sequences. The reciprocal operator is SUB. To check the reciprocity we can use
for instance:

choosebank("emblTP")
A <- query("A","T=TRNA", virtual=TRUE)
B <- query("B","PAR A", virtual=TRUE)
C <- query("C","SUB B", virtual=TRUE)
D <- query("D","PAR C", virtual=TRUE)
emptySet <- query("emptySet", "B AND NOT D", virtual=TRUE)
emptySet$nelem

[1] 0

closebank()

5.4.5 SUB

This is a unary operator to add all subsequences of members of the single list
operand.

choosebank("emblTP")
SUBexample <- query("SUBexample","AC=AE000783",virtual=T)
SUBexample$nelem

[1] 70

SUBexample2 <- query("SUBexample2","SUB SUBexample",virtual=T)
SUBexample2$nelem

[1] 943

closebank()

5.4.6 PS

This unary operator is used to get the list of species attached to member se-
quences of the operand list.

choosebank("emblTP")
PSexample <- query("PSexample","K=hyperthermo@",virtual=T)
PSexample2 <- query("PSexample2","PS PSexample")
getName(PSexample2)

[1] "BACILLUS LICHENIFORMIS" "DESULFUROCOCCUS"
[3] "PYROCOCCUS FURIOSUS"

closebank()

5.4.7 PK

This unary operator is used to get the list of keywords attached to member
sequences of the operand list.

choosebank("emblTP")
PKexample <- query("PKexample","AC=AE000783",virtual=T)
PKexample2 <- query("PKexample2","PK PKexample")
getName(PKexample2)

[1] "DIVISION PRO" "CDS" "RRNA" "TRNA"
[5] "SOURCE" "RELEASE 75"

closebank()

5.4. OPERATORS 73

5.4.8 UN

This unary operator is used to get the list of sequences attached to a list of
species or keywords.

choosebank("emblTP")
fileSP <- system.file("sequences/bb.sp", package = "seqinr")
cat(readLines(fileSP),sep="\n")

BORRELIA ANSERINA
BORRELIA CORIACEAE
BORRELIA PARKERI
BORRELIA TURICATAE
BORRELIA HERMSII
BORRELIA CROCIDURAE
BORRELIA LONESTARI
BORRELIA HISPANICA
BORRELIA BARBOURI
BORRELIA THEILERI
BORRELIA DUTTONII
BORRELIA MIYAMOTOI
BORRELIA PERSICA
BORRELIA RECURRENTIS
BORRELIA BURGDORFERI
BORRELIA AFZELII
BORRELIA GARINII
BORRELIA ANDERSONII
BORRELIA VALAISIANA
BORRELIA JAPONICA

listSP <- clfcd("listSP", file = fileSP, type = "SP")
UNexample <- query("UNexample", "UN listSP", virtual = TRUE)
UNexample$nelem

[1] 2877

closebank()

5.4.9 SD

This unary operator computes the list of species placed in the tree below the
members of the species list operand.

choosebank("emblTP")
hominidae <- query("hominidae","SP=Hominidae",virtual=T)
hsp <- query("hsp","PS hominidae",virtual=T)
hsp$nelem

[1] 19

SDexample <- query("SDexample","SD hsp")
getName(SDexample)

[1] "HOMINIDAE" "PONGO"
[3] "PONGO PYGMAEUS" "PONGO PYGMAEUS ABELII"
[5] "PONGO PYGMAEUS PYGMAEUS" "PONGO SP."
[7] "HOMO/PAN/GORILLA GROUP" "GORILLA"
[9] "GORILLA GORILLA" "GORILLA GORILLA BERINGEI"
[11] "GORILLA GORILLA GRAUERI" "GORILLA GORILLA GORILLA"
[13] "GORILLA GORILLA UELLENSIS" "PAN"
[15] "PAN TROGLODYTES" "PAN TROGLODYTES SCHWEINFURTHII"
[17] "PAN TROGLODYTES TROGLODYTES" "PAN TROGLODYTES VERUS"
[19] "PAN TROGLODYTES VELLEROSUS" "PAN PANISCUS"
[21] "HOMO" "HOMO SAPIENS"
[23] "HOMO SAPIENS NEANDERTHALENSIS"

closebank()

5.4.10 KD

This unary operator computes the list of keywords placed in the tree below the
members of the keywords list operand.

74 CHAPTER 5. THE QUERY LANGUAGE

choosebank("emblTP")
cat <- query("cat","SP=Felis catus", virtual = TRUE)
catkw <- query("catkw","PK cat", virtual = TRUE)
catkw$nelem

[1] 540

KDexample <- query("KDexample","KD catkw", virtual = TRUE)
KDexample$nelem

[1] 572

closebank()

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Wed Jun 1 16:07:13 2016

• LATEX compilation time was: June 2, 2016

CHAPTER 6

How to deal with sequences

Charif, D. Lobry, J.R.

6.1 Sequence classes

There are currently 5 classes of sequences, depending on the way they were
obtained:

• SeqFastadna is the class for nucleic acid sequences that were imported
from a fasta file.

• SeqFastaAA is the class for amino-acid acid sequences that were im-
ported from a fasta file.

• seqAcnucWeb is the class for the sequences coming from an ACNUC
database server.

• SeqFrag is the class for the sequences that are fragments of other se-
quences.

• qaw is the class for the result of a call to the query() function.

6.2 Generic methods for sequences

All sequence classes are sharing a common interface, so that there are very few
method names we have to remember. In addition, all classes have their specific
as.ClassName method that return an instance of the class, and is.ClassName

method to check whether an object belongs or not to the class. Available meth-
ods are summarized in table 6.1.

75

76 CHAPTER 6. HOW TO DEAL WITH SEQUENCES

Methods Result Type of result
getFrag a sequence fragment a sequence fragment
getSequence the sequence vector of characters
getName the name of a sequence string
getLength the length of a sequence numeric vector
getTrans translation into amino-acids vector of characters
getAnnot sequence annotations vector of string
getLocation position of a Sequence on its parent sequence list of numeric vector

Table 6.1: Available methods for sequence classes.

6.2.1 From classes to methods

To obtain the list of methods available for a given class, try this at your
prompt:

methods(class = "SeqFastadna")

[1] getAnnot getFrag getLength getName getSequence getTrans
[7] summary
see '?methods' for accessing help and source code

methods(class = "SeqFastaAA")

[1] getAnnot getFrag getLength getName getSequence summary
see '?methods' for accessing help and source code

methods(class = "SeqAcnucWeb")

[1] getAnnot getFrag getKeyword getLength getLocation getName
[7] getSequence getTrans plot print
see '?methods' for accessing help and source code

methods(class = "SeqFrag")

[1] getFrag getLength getName getSequence getTrans
see '?methods' for accessing help and source code

methods(class = "qaw")

[1] getAnnot getFrag getKeyword getLength getLocation getName
[7] getSequence getTrans print
see '?methods' for accessing help and source code

6.2.2 From methods to classes

To obtain the list of classes for which a given method exists, try this at your
prompt:

methods(getFrag)

[1] getFrag.character getFrag.default getFrag.list
[4] getFrag.logical getFrag.qaw getFrag.SeqAcnucWeb
[7] getFrag.SeqFastaAA getFrag.SeqFastadna getFrag.SeqFrag
see '?methods' for accessing help and source code

methods(getSequence)

[1] getSequence.character getSequence.default getSequence.list
[4] getSequence.logical getSequence.qaw getSequence.SeqAcnucWeb
[7] getSequence.SeqFastaAA getSequence.SeqFastadna getSequence.SeqFrag
see '?methods' for accessing help and source code

methods(getName)

[1] getName.default getName.list getName.logical
[4] getName.qaw getName.SeqAcnucWeb getName.SeqFastaAA
[7] getName.SeqFastadna getName.SeqFrag
see '?methods' for accessing help and source code

methods(getLength)

6.3. INTERNAL REPRESENTATION OF SEQUENCES 77

[1] getLength.character getLength.default getLength.list
[4] getLength.logical getLength.qaw getLength.SeqAcnucWeb
[7] getLength.SeqFastaAA getLength.SeqFastadna getLength.SeqFrag
see '?methods' for accessing help and source code

methods(getTrans)

[1] getTrans.character getTrans.default getTrans.list
[4] getTrans.logical getTrans.qaw getTrans.SeqAcnucWeb
[7] getTrans.SeqFastadna getTrans.SeqFrag
see '?methods' for accessing help and source code

methods(getAnnot)

[1] getAnnot.default getAnnot.list getAnnot.logical
[4] getAnnot.qaw getAnnot.SeqAcnucWeb getAnnot.SeqFastaAA
[7] getAnnot.SeqFastadna
see '?methods' for accessing help and source code

methods(getLocation)

[1] getLocation.default getLocation.list getLocation.logical
[4] getLocation.qaw getLocation.SeqAcnucWeb
see '?methods' for accessing help and source code

6.3 Internal representation of sequences

The default mode of sequence storage is done with vectors of characters instead
of strings1. This is very convenient for the user because all tools to ma-
nipulate vectors are immediatly available. The price to pay is that this storage
mode is extremly expensive in terms of memory. They are two utilities called
s2c() and c2s() that allows to convert strings into vector of characters, and
vice versa, respectively.

6.3.1 Sequences as vectors of characters

In the vectorial representation mode, all the very convenient tools for index-
ing vectors are at hand.

1. Vectors can be indexed by a vector of positive integers saying which ele-
ments are to be selected. As we have already seen, the first 50 elements
of a sequence are easily extracted thanks to the binary operator from:to,
as in:

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
myseq <- read.fasta(file = dnafile)[[1]]
1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
[49] 49 50

myseq[1:50]

[1] "a" "t" "g" "a" "a" "a" "a" "t" "g" "a" "a" "t" "a" "a" "a" "a" "g" "t"
[19] "c" "t" "c" "a" "t" "c" "g" "t" "c" "c" "t" "c" "t" "g" "t" "t" "t" "a"
[37] "t" "c" "a" "g" "c" "a" "g" "g" "g" "t" "t" "a" "c" "t"

The seq() function allows to build more complexe integer vectors. For
instance in coding sequences it is very common to focus on third codon
positions where selection is weak. Let’s extract bases from third codon
positions:

1 This default behaviour can be neutralized by setting the as.string argument to TRUE.

78 CHAPTER 6. HOW TO DEAL WITH SEQUENCES

tcp <- seq(from = 3, to = length(myseq), by = 3)
tcp[1:10]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp <- myseq[tcp]
myseqtcp[1:10]

[1] "g" "a" "g" "t" "a" "t" "c" "c" "c" "c"

2. Vectors can also be indexed by a vector of negative integers saying which
elements have to be removed. For instance, if we want to keep first and
second codon positions, the easiest way is to remove third codon positions:

-tcp[1:10]

[1] -3 -6 -9 -12 -15 -18 -21 -24 -27 -30

myseqfscp <- myseq[-tcp]
myseqfscp[1:10]

[1] "a" "t" "a" "a" "a" "t" "a" "a" "a" "a"

3. Vectors are also indexable by a vector of logicals whose TRUE values say
which elements to keep. Here is a different way to extract all third coding
positions from our sequence. First, we define a vector of three logicals
with only the last one true:

ind <- c(F, F, T)
ind

[1] FALSE FALSE TRUE

This vector seems too short for our purpose because our sequence is much
more longer with its 921 bases. But under vectors are automatically
recycled when they are not long enough:

(1:30)[ind]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp2 <- myseq[ind]

The result should be the same as previously:

identical(myseqtcp, myseqtcp2)

[1] TRUE

This recycling rule is extremely convenient in practice but may have sur-
prising effects if you assume (incorrectly) that there is a stringent dimen-
sion control for vectors as in linear algebra.

Another advantage of working with vector of characters is that most func-
tions are vectorized so that many things can be done without explicit looping.
Let’s give some very simple examples:

(tota <- sum(myseq == "a"))

[1] 238

6.3. INTERNAL REPRESENTATION OF SEQUENCES 79

a
c
g
t

0 50 100 150 200 250

Base count in XYLEECOM.MALM

Figure 6.1: Visual representation of the base counts in a nucleic acid sequence.

The total number of a in our sequence is 238. Let’s compare graphically the
different base counts in our sequence. The following code was used to produce
figure 6.1:

basecount <- table(myseq)
myseqname <- getName(myseq)
dotchart(basecount, xlim = c(0, max(basecount)), pch = 19,
main = paste("Base count in", myseqname))

The following code was used to display (cf figure 6.2) the dinucleotide counts
in the sequence:

dinuclcount <- count(myseq, 2)
dotchart(dinuclcount[order(dinuclcount)], xlim = c(0, max(dinuclcount)), pch = 19,
main = paste("Dinucleotide count in", myseqname))

The following code was used to display (cf figure 6.3) the codon usage in
the sequence:

codonusage <- uco(myseq)
dotchart.uco(codonusage, main = paste("Codon usage in", myseqname))

80 CHAPTER 6. HOW TO DEAL WITH SEQUENCES

ta

at

ag

gt

tt

tc

gg

ct

ga

tg

ca

ac

cg

gc

cc

aa

0 20 40 60 80

Dinucleotide count in XYLEECOM.MALM

Figure 6.2: Visual representation of dinucleotide counts in a nucleic acid se-
quence.

6.3. INTERNAL REPRESENTATION OF SEQUENCES 81

gct
gcg
gca
gcc

ctg
ctc
tta
ctt
ttg
cta

agc
agt
tcc
tct
tcg
tca

acc
acg
aca
act

gtt
gtg
gtc
gta

ccg
cca
ccc
cct

ggc
ggt
ggg
gga

aaa
aag

caa
cag

gat
gac

aac
aat

atc
att
ata

gaa
gag

ttt
ttc

tat
tac

atg

cgt
cgc
cgg
cga
agg
aga

cat
cac

taa
tga
tag

tgg

tgt
tgc

Cys

Trp

Stp

His

Arg

Met

Tyr

Phe

Glu

Ile

Asn

Asp

Gln

Lys

Gly

Pro

Val

Thr

Ser

Leu

Ala

0 5 10 15 20 25 30 35

Codon usage in XYLEECOM.MALM

Figure 6.3: Visual representation of codon usage in a coding sequence with
the function dotchart.uco(). Codons are grouped by amino-acid for a given
genetic code. Black dots are the sums by synonymous codons, that is the amino-
acid count.

82 CHAPTER 6. HOW TO DEAL WITH SEQUENCES

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Wed Jun 1 16:24:00 2016

• LATEX compilation time was: June 2, 2016

CHAPTER 7

Multivariate analyses

Lobry, J.R.

7.1 Correspondence analysis

This is the most popular multivariate data analysis technique for amino-acid
and codon count tables, its application, however, is not without pitfalls [74]. Its
primary goal is to transform a table of counts into a graphical display, in which
each gene (or protein) and each codon (or amino-acid) is depicted as a point.
Correspondence analysis (CA) may be defined as a special case of principal
components analysis (PCA) with a different underlying metrics. The interest
of the metrics in CA, that is the way we measure the distance between two
individuals, is illustrated bellow with a very simple example (Table 7.1 inspired
from [21]) with only three proteins having only three amino-acids, so that we
can represent exactly on a map the consequences of the metric choice.

data(toyaa)
toyaa

Ala Val Cys
1 130 70 0
2 60 40 0
3 60 35 5

Ala Val Cys
1 130 70 0
2 60 40 0
3 60 35 5

Table 7.1: A very simple example of amino-acid counts in three proteins to be
loaded with data(toyaa).

Let’s first use the regular Euclidian metrics between two proteins i and i′,

d2(i, i′) =
J∑

j=1
(nij − ni′j)2 (7.1)

83

84 CHAPTER 7. MULTIVARIATE ANALYSES

to visualize this small data set:

library(ade4)
pco <- dudi.pco(dist(toyaa), scann = F, nf = 2)
myplot <- function(res, ...)
{
plot(res$li[, 1], res$li[, 2], ...)
text(x = res$li[, 1], y = res$li[, 2], labels = 1:3, pos = ifelse(res$li[, 2] < 0, 1, 3))
perm <- c(3, 1, 2)
lines(c(res$li[, 1], res$li[perm, 1]), c(res$li[, 2], res$li[perm, 2]))

}
myplot(pco, main = "Euclidian distance", asp = 1, pch = 19, xlab = "", ylab = "", las = 1)

−20 0 20 40

−30

−20

−10

0

10

20

30

Euclidian distance

1

2

3

From this point of view, the first individual is far away from the two others.
But thinking about it, this is a rather trivial effect of protein size:

rowSums(toyaa)

1 2 3
200 100 100

With 200 amino-acids, the first protein is two times bigger than the others so
that when computing the Euclidian distance (7.1) its nij entries are on average
bigger, sending it away from the others. To get rid of this trivial effect, the first
obvious idea is to divide counts by protein lengths so as to work with protein
profiles. The corresponding distance is,

d2(i, i′) =
J∑

j=1
(nij

ni•
− ni′j

ni′•
)2 (7.2)

where ni• and ni′• are the total number of amino-acids in protein i and i′,
respectively.

7.1. CORRESPONDENCE ANALYSIS 85

profile <- toyaa/rowSums(toyaa)
profile

Ala Val Cys
1 0.65 0.35 0.00
2 0.60 0.40 0.00
3 0.60 0.35 0.05

dudi.pco(dist(profile), scann = F, nf = 2) -> pco1
myplot(pco1, main = "Euclidian distance on protein profiles", asp = 1, pch = 19, xlab = "", ylab = "",
ylim = range(pco1$li[, 2])*1.2)

−0.04 −0.02 0.00 0.02 0.04

−
0.

02
0.

00
0.

02
0.

04

Euclidian distance on protein profiles

12

3

The pattern is now completely different with the three protein equally spaced.
This is normal because in terms of relative amino-acid composition they are all
differing two-by-two by 5% at the level of two amino-acids only. We have clearly
removed the trivial protein size effect, but this is still not completely satisfac-
tory. The proteins are differing by 5% for all amino-acids but the situation is
somewhat different for Cys because this amino-acid is very rare. A difference
of 5% for a rare amino-acid has not the same significance than a difference of
5% for a common amino-acid such as Ala in our example. To cope with this,
CA make use of a variance-standardizing technique to compensate for the larger
variance in high frequencies and the smaller variance in low frequencies. This
is achieved with the use of the chi-square distance (χ2) which differs from the
previous Euclidean distance on profiles (7.2) in that each square is weighted by
the inverse of the frequency corresponding to each term,

d2(i, i′) = n••

J∑
j=1

1
n•j

(nij

ni•
− ni′j

ni′•
)2 (7.3)

where n•j is the total number of amino-acid of kind j and n•• the total
number of amino-acids. With this point of view, the map is now like this:

86 CHAPTER 7. MULTIVARIATE ANALYSES

coa <- dudi.coa(toyaa, scann = FALSE, nf = 2)
myplot(coa, main = expression(paste(chi^2," distance")),
asp = 1, pch = 19, xlab = "", ylab = "")

−0.3 −0.2 −0.1 0.0 0.1

−
0.

2
−

0.
1

0.
0

0.
1

χ2 distance

1

2

3

The pattern is completely different with now protein number 3 which is
far away from the others because it is enriched in the rare amino-acid Cys as
compared to others.

The purpose of this small example was to demonstrates that the metric
choice is not without dramatic effects on the visualisation of data. Depending
on your objectives, you may agree or disagree with the χ2 metric choice, that’s
not a problem, the important point is that you should be aware that there is
an underlying model there, chacun a son goût ou chacun à son goût, it’s up to
you.

Now, if you agree with the χ2 metric choice, there’s a nice representation
that may help you for the interpretation of results. This is a kind of ”biplot”
representation in which the lines and columns of the dataset are simultaneously
represented, in the right way, that is as a graphical translation of a mathematical
theorem, but let’s see how does it look like in practice:

scatter(coa, clab.col = 0.8, clab.row = 0.8, posi = "none")

NULL

7.1. CORRESPONDENCE ANALYSIS 87

 d = 0.5

 1

 2
 3

 Ala

 Val
 Cys

What is obvious is that the Cys content has a major effect on protein vari-
ability here, no scoop. Please note how the information is well summarised here:
protein number 3 differs because it’s enriched in in Cys ; protein number 1 and
2 are almost the same but there is a small trend protein number 1 to be enriched
in Ala. As compared to to table 7.1 this graph is of poor information here, so
let’s try a more big-rooom-sized example (with 20 columns so as to illustrate
the dimension reduction technique).

Data are from [59], a sample of the proteome of Escherichia coli. According
to the title of this paper, the most important factor for the between-protein
variability is hydrophilic - hydrophobic gradient. Let’s try to reproduce this
assertion :

download.file(url="ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt", destfile = "data.txt")
ec <- read.table(file = "data.txt", header = TRUE,

row.names = 1)
ec.coa <- dudi.coa(ec, scann = FALSE, nf = 1)
F1 <- ec.coa$li[,1]
hist(F1, proba = TRUE, xlab = "First factor for amino-acid variability",
col = grey(0.8), border = grey(0.5), las = 1, ylim = c(0,6),

main="Protein distribution on first factor")
lines(density(F1, adjust = 0.5), lwd = 2)

88 CHAPTER 7. MULTIVARIATE ANALYSES

Protein distribution on first factor

First factor for amino−acid variability

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0

1

2

3

4

5

6

There is clearly a bimodal distribution of proteins on the first factor. What
are the the amino-acid coordinates on this factor?

aacoo <- ec.coa$co[, 1]
names(aacoo) <- rownames(ec.coa$co)
aacoo <- sort(aacoo)
dotchart(aacoo, pch = 19, xlab = "Coordinate on first factor",
main = "Amino acid coordinates on first factor")

glu
asp
arg
gln
lys
his
asn
pro
cys
thr
tyr
ala
val
ser
leu
gly
ile
met
phe
trp

−0.2 −0.1 0.0 0.1 0.2 0.3

Amino acid coordinates on first factor

Coordinate on first factor

7.1. CORRESPONDENCE ANALYSIS 89

Aliphatic and aromatic amino-acids have positive values while charged amino-
acids have negative values1. Let’s try to compute the GRAVY score (i.e. the
Kyte and Doolittle hydropathic index[49]) of our proteins to compare this with
their coordinates on the first factor. We need first the amino-acid relatives fre-
quencies in the proteins, for this we divide the all the amino-acid counts by the
total by row:

ecfr <- ec/rowSums(ec)
ecfr[1:5, 1:5]

arg leu ser thr pro
FOLE 0.05829596 0.10313901 0.06278027 0.08520179 0.03587444
MSBA 0.06529210 0.10309278 0.08591065 0.06185567 0.02233677
NARV 0.06637168 0.12831858 0.06637168 0.05752212 0.03539823
NARW 0.05627706 0.16450216 0.05627706 0.03030303 0.04329004
NARY 0.06614786 0.06420233 0.05058366 0.03891051 0.06031128

We need also the coefficients corresponding to the GRAVY score:

gravy <- read.table(file ="ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/gravy.txt")
gravy[1:5,]

V1 V2
1 Ala 1.8
2 Arg -4.5
3 Asn -3.5
4 Asp -3.5
5 Cys 2.5

coef <- gravy$V2

The coefficient are given in the alphabetical order of the three letter code
for the amino acids, that is in a different order than in the object ecfr:

names(ecfr)

[1] "arg" "leu" "ser" "thr" "pro" "ala" "gly" "val" "lys" "asn" "gln" "his"
[13] "glu" "asp" "tyr" "cys" "phe" "ile" "met" "trp"

We then re-order the columns of the data set and check that everthing is
OK:

ecfr <- ecfr[, order(names(ecfr))]
ecfr[1:5,1:5]

ala arg asn asp cys
FOLE 0.08520179 0.05829596 0.04035874 0.05381166 0.008968610
MSBA 0.08247423 0.06529210 0.03608247 0.05154639 0.003436426
NARV 0.05309735 0.06637168 0.01769912 0.02212389 0.013274336
NARW 0.09090909 0.05627706 0.02597403 0.09090909 0.017316017
NARY 0.06225681 0.06614786 0.03891051 0.05642023 0.035019455

all(names(ecfr) == tolower(as.character(gravy$V1)))

[1] TRUE

Now, thanks to R build-in matrix multiplication, it’s only one line to compute
the GRAVY score:

as.matrix(ecfr) %*% coef -> gscores
plot(gscores,F1,xlab="GRAVY Score", ylab="F1 Score",las=1,main="The first factor is protein hydrophaty")

1The physico-chemical classes for amino acids are given in the component AA.PROPERTY of
the SEQINR.UTIL object.

90 CHAPTER 7. MULTIVARIATE ANALYSES

−1.0 −0.5 0.0 0.5 1.0

−0.2

0.0

0.2

0.4

The first factor is protein hydrophaty

GRAVY Score

F
1

S
co

re

The proteins with high GRAVY scores are integral membrane proteins, and
those with low scores are cytoplasmic proteins. Now, suppose that we want to
adjust a mixture of two normal distributions to get an estimate of the proportion
of cytoplasmic and integral membrane proteins. We first have a look on the
predefined distributions (Table 7.2), but there is apparently not an out of the
box solution. We then define our own probability density function and then
use fitdistr from package MASS to get a maximum likelihood estimate of the
parameters:

dmixnor <- function(x, p, m1, sd1, m2, sd2){
p*dnorm(x, m1, sd1) + (1 - p)*dnorm(x, m2, sd2)

}
library(MASS)
fitdistr(F1, dmixnor, list(p=0.88, m1=-0.04, sd1=0.076, m2=0.34, sd2=0.07))$estimate -> e
e

p m1 sd1 m2 sd2
0.88405009 -0.03989489 0.07632235 0.33579162 0.06632259

hist(F1, proba = TRUE, col = grey(0.8),
main = "Ajustement with a mixture of two normal distributions",
xlab = "First factor for amino-acid variability", las = 1)
xx <- seq(from = min(F1), to = max(F1), length = 200)
lines(xx, dmixnor(xx,e[1],e[2],e[3],e[4],e[5]), lwd = 2)

7.1. CORRESPONDENCE ANALYSIS 91

d p q r
beta dbeta pbeta qbeta rbeta

binom dbinom pbinom qbinom rbinom
cauchy dcauchy pcauchy qcauchy rcauchy

chisq dchisq pchisq qchisq rchisq
exp dexp pexp qexp rexp

f df pf qf rf
gamma dgamma pgamma qgamma rgamma

geom dgeom pgeom qgeom rgeom
hyper dhyper phyper qhyper rhyper
lnorm dlnorm plnorm qlnorm rlnorm

logis dlogis plogis qlogis rlogis
nbinom dnbinom pnbinom qnbinom rnbinom

norm dnorm pnorm qnorm rnorm
pois dpois ppois qpois rpois

signrank dsignrank psignrank qsignrank rsignrank
t dt pt qt rt

unif dunif punif qunif runif
weibull dweibull pweibull qweibull rweibull
wilcox dwilcox pwilcox qwilcox rwilcox

Table 7.2: Density, distribution function, quantile function and random gener-
ation for the predefined distributions under R

Ajustement with a mixture of two normal distributions

First factor for amino−acid variability

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0

1

2

3

4

92 CHAPTER 7. MULTIVARIATE ANALYSES

7.2 Synonymous and non-synonymous analyses

Genetic codes are surjective applications from the set codons (n = 64) into the
set of amino-acids (n = 20) :

The surjective nature of genetic codes
Genetic code number 1

Adapted from insert 2 in Lobry & Chessel (2003) JAG 44:235

gcagccgcggctaga
agg

cga
cgc

cgg
cgt

aac
aat
gac

gat

tgc

tgt

caa
cag

gaa

gag
gga

ggc
ggg

ggt
cac

cat
ata

atc
attctactcctgcttttattgaaa

aag
atg

ttc
ttt

cca
ccc

ccg
cct

agc
agt

tca

tcc

tcg
tct

taa

tag
tga
aca

acc
acg

act
tgg

tac
tat

gtagtcgtg gtt

AlaArg
Asn

Asp
Cys

Gln
Glu

Gly
His

IleLeuLysMet
Phe

Pro
Ser

Stp
Thr

Trp
TyrVal

A R N
D
C
Q
E

G
H

ILKM
F

P
S
*
T
W

Y V

Two codons encoding the same amino-acid are said synonymous while two
codons encoding a different amino-acid are said non-synonymous. The distinc-
tion between the synonymous and non-synonymous level are very important in
evolutionary studies because most of the selective pressure is expected to work
at the non-synonymous level, because the amino-acids are the components of
the proteins, and therefore more likely to be subject to selection.

Ks and Ka are an estimation of the number of substitutions per synonymous
site and per non-synonymous site, respectively, between two protein-coding
genes [52]. The Ka

Ks
ratio is used as tool to evaluate selective pressure (see

[36] for a nice back to basics). Let’s give a simple illustration with three orthol-
ogous genes of the thioredoxin familiy from Homo sapiens, Mus musculus, and
Rattus norvegicus species:

ortho <- read.alignment(system.file("sequences/ortho.fasta", package = "seqinr"), format="fasta")
kaks.ortho <- kaks(ortho)
kaks.ortho$ka/kaks.ortho$ks

AK002358.PE1 501 residues
HSU78678.PE1 501 residues 0.1243472

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 93

RNU73525.PE1 501 residues 0.1405012
HSU78678.PE1 501 residues

HSU78678.PE1 501 residues
RNU73525.PE1 501 residues 0.1356036

The Ka

Ks
ratios are less than 1, suggesting a selective pressure on those pro-

teins during evolution.

For transversal studies (i.e. codon usage studies in a genome at the time it
was sequenced) there is little doubt that the strong requirement to distinguish
between synonymous and an non-synonymous variability was the source of many
mistakes [74]. We have just shown here with a scholarship example that the
metric choice is not neutral. If you consider that the χ2 metric is not too bad,
with respect to your objectives, and that you want to quantify the synonymous
and an non-synonymous variability, please consider reading this paper [58], and
follow this link http://pbil.univ-lyon1.fr/members/lobry/repro/jag03/

for on-line reproducibility.

Let’s now use the toy example given in table 7.3 to illustrate how to study
synonymous and non-synonymous codon usage.

data(toycodon)
toycodon

gca gcc gcg gct gta gtc gtg gtt tgt tgc
1 33 32 32 33 18 17 17 18 0 0
2 13 17 17 13 8 12 12 8 0 0
3 16 14 14 16 8 9 10 8 3 2

gca gcc gcg gct gta gtc gtg gtt tgt tgc
1 33 32 32 33 18 17 17 18 0 0
2 13 17 17 13 8 12 12 8 0 0
3 16 14 14 16 8 9 10 8 3 2

Table 7.3: A very simple example of codon counts in three coding sequences to
be loaded with data(toycodon).

Let’s first have a look to global codon usage, we do not take into account
the structure of the genetic code:

global <- dudi.coa(toycodon, scann = FALSE, nf= 2)
myplot(global, asp = 1, pch = 19, xlab = "", ylab = "", main = "Global codon usage")

http://pbil.univ-lyon1.fr/members/lobry/repro/jag03/

94 CHAPTER 7. MULTIVARIATE ANALYSES

−0.3 −0.2 −0.1 0.0 0.1

−
0.

1
0.

0
0.

1
0.

2

Global codon usage

1

2

3

From a global codon usage point of view, coding sequence number 3 is away.
To take into account the genetic code structure, we need to know for which
amino-acid the codons are coding. The codons are given by the names of the
columns of the object toycodon:

names(toycodon)

[1] "gca" "gcc" "gcg" "gct" "gta" "gtc" "gtg" "gtt" "tgt" "tgc"

Put all codon names into a single string:

c2s(names(toycodon))

[1] "gcagccgcggctgtagtcgtggtttgttgc"

Transform this string as a vector of characters:

s2c(c2s(names(toycodon)))

[1] "g" "c" "a" "g" "c" "c" "g" "c" "g" "g" "c" "t" "g" "t" "a" "g" "t" "c"
[19] "g" "t" "g" "g" "t" "t" "t" "g" "t" "t" "g" "c"

Translate this into amino-acids using the default genetic code:

translate(s2c(c2s(names(toycodon))))

[1] "A" "A" "A" "A" "V" "V" "V" "V" "C" "C"

Use the three letter code for amino-acid instead:

aaa(translate(s2c(c2s(names(toycodon)))))

[1] "Ala" "Ala" "Ala" "Ala" "Val" "Val" "Val" "Val" "Cys" "Cys"

Make this a factor:

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 95

facaa <- factor(aaa(translate(s2c(c2s(names(toycodon))))))
facaa

[1] Ala Ala Ala Ala Val Val Val Val Cys Cys
Levels: Ala Cys Val

The non synonymous codon usage analysis is the between amino-acid anal-
ysis:

nonsynonymous <- t(bca(x = t(global), fac = facaa, scann = FALSE, nf = 2))
myplot(nonsynonymous, asp = 1, pch = 19, xlab = "", ylab = "", main = "Non synonymous codon usage")

−0.1 0.0 0.1 0.2 0.3

−
0.

1
0.

0
0.

1
0.

2

Non synonymous codon usage

1

2

3

This is reminiscent of something, let’s have a look at amino-acid counts:

by(t(toycodon), facaa, colSums)

INDICES: Ala
1 2 3

130 60 60

INDICES: Cys
1 2 3
0 0 5

INDICES: Val
1 2 3
70 40 35

This is exactly the same data set that we used previously (table 7.1) at the
amino-acid level. The non synonymous codon usage analysis is exactly the same
as the amino-acid analysis. Coding sequence number 3 is far away because it
codes for many Cys, a rare amino-acid. Note that at the global codon usage
level, this is also the major visible structure. To get rid of this amino-acid
effect, we use the synonymous codon usage analysis, that is the within amino-
acid analysis:

96 CHAPTER 7. MULTIVARIATE ANALYSES

synonymous <- t(wca(x = t(global), fac = facaa, scann = FALSE, nf = 2))
myplot(synonymous, asp = 1, pch = 19, xlab = "", ylab = "", main = "Synonymous codon usage")

−0.10 −0.05 0.00 0.05

−
0.

05
0.

00
0.

05
0.

10

Synonymous codon usage

1

2

3

Now, coding sequence number 2 is away. When the amino-acid effect is
removed, the pattern is then completely different. To interpret the result we
look at the codon coordinates on the first factor of synonymous codon usage:

synonymous$co[, 1, drop = FALSE] -> tmp
tmp <- tmp[order(tmp$Axis1), , drop = FALSE]
colcod <- sapply(rownames(tmp), function(x) ifelse(substr(x,3,3) == "c" || substr(x,3,3) == "g", "blue", "red"))
pchcod <- ifelse(colcod=="red",1,19)
dotchart(tmp$Axis1, labels = toupper(rownames(tmp)),
color = colcod, pch = pchcod,
main = "Codon coordinates on first factor\nfor synonymous codon usage")
legend("topleft", inset = 0.02, legend = c("GC ending codons", "AT ending codons"),
text.col = c("blue", "red"), pch = c(19,1), col = c("blue","red"), bg = "white")

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 97

GTC

GTG

GCC

GCG

TGT

TGC

GCA

GCT

GTA

GTT

−0.10 −0.05 0.00 0.05 0.10

Codon coordinates on first factor
for synonymous codon usage

GC ending codons
AT ending codons

At the synonymous level, coding sequence number 2 is different because it
is enriched in GC-ending codons as compared to the two others. Note that this
is hard to see at the global codon usage level because of the strong amino-acid
effect.

Figure 7.1: Screenshot of figure 5 from [59]. Each point represents a protein.
This was to show the correlation between the codon adaptation index (CAI
Score) with the second factor of correspondence analysis at the amino-acid level
(F2 Score). Highly expressed genes have a high CAI value.

98 CHAPTER 7. MULTIVARIATE ANALYSES

To illustrate the interest of synonymous codon usage analyses, let’s use now
a more realistic example. In [59] there was an assertion stating that selection
for translation optimisation in Escherichia coli was also visible at the amino-
acid level. The argument was in figure 5 of the paper (cf fig 7.1), that can be
reproduced2 with the following R code:

ec <- read.table(
file = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt",
header = TRUE,
row.names = 1)

ec.coa <- dudi.coa(ec, scann = FALSE, nf=3)
F2 <- ec.coa$li[,2]
tmp <- read.table(

file = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/ecoli999.cai")
cai <- exp(tmp$V2)
if(cor(cai,F2) > 0) F2 <- -F2
plot(cai, F2, pch=20, xlab="CAI Score", ylab="F2 Score",

main="Fig 5 from Lobry & Gautier (1994) NAR 22:3174")

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Fig 5 from Lobry & Gautier (1994) NAR 22:3174

CAI Score

F
2

S
co

re

So, there was a correlation between the CAI (Codon Adaptation Index [87])
and the second factor for amino-acid composition variability. However, this is
not completely convincing because the CAI is not completely independent of
the amino-acid composition of the protein. Let’s use within amino-acid cor-
respondence analysis to remove the amino-acid effect. Here is a commented
step-by-step analysis:

data(ec999)
class(ec999)

[1] "list"

names(ec999)[1:10]

2 the code to reproduce all figures from [59] is available at http://pbil.univ-lyon1.fr/

members/lobry/repro/nar94/.

http://pbil.univ-lyon1.fr/members/lobry/repro/nar94/
http://pbil.univ-lyon1.fr/members/lobry/repro/nar94/

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 99

[1] "ECFOLE.FOLE" "ECMSBAG.MSBA" "ECNARZYW-C.NARV" "ECNARZYW-C.NARW"
[5] "ECNARZYW-C.NARY" "ECNARZYW-C.NARZ" "ECNIRBC.NIRB" "ECNIRBC.NIRD"
[9] "ECNIRBC.NIRC" "ECNIRBC.CYSG"

ec999[[1]][1:50]

[1] "a" "t" "g" "c" "c" "a" "t" "c" "a" "c" "t" "c" "a" "g" "t" "a" "a" "a"
[19] "g" "a" "a" "g" "c" "g" "g" "c" "c" "c" "t" "g" "g" "t" "t" "c" "a" "t"
[37] "g" "a" "a" "g" "c" "g" "t" "t" "a" "g" "t" "t" "g" "c"

This is to load the data from [59] which is available as ec999 in the seqinR
package. The letters ec are for the bacterium Escherichia coli and the number
999 means that there were 999 coding sequences available from this species at
that time. The class of the object ec999 is a list, which names are the coding
sequence names, for instance the first coding sequence name is ECFOLE.FOLE.
Each element of the list is a vector of character, we have listed just above the 50
first character of the first coding sequence of the list with ec999[[1]][1:50],
we can see that there is a start codon (ATG) at the beginning of the first coding
sequence.

ec999.uco <- lapply(ec999, uco) # compute codon usage for all CDS
class(ec999.uco)

[1] "list"

class(ec999.uco[[1]])

[1] "table"

ec999.uco[[1]]

aaa aac aag aat aca acc acg act aga agc agg agt ata atc atg att caa cac cag
9 5 2 4 2 8 8 1 0 2 0 4 0 9 8 6 2 3 7

cat cca ccc ccg cct cga cgc cgg cgt cta ctc ctg ctt gaa gac gag gat gca gcc
7 1 1 6 0 1 7 1 4 1 3 13 3 12 3 1 9 1 6

gcg gct gga ggc ggg ggt gta gtc gtg gtt taa tac tag tat tca tcc tcg tct tga
7 5 2 3 0 4 0 5 9 4 0 2 0 2 2 3 2 1 1

tgc tgg tgt tta ttc ttg ttt
1 0 1 1 4 2 3

This is to compute the codon usage, that is how many times each codon
is used in each coding sequence. Because ec999 is a list, we use the function
lapply() to apply the same function, uco(), to all the elements of the list and
we store the result in the object ec999.uco. The object ec999.uco is a list too,
and all its elements belong to the class table.

df <- as.data.frame(lapply(ec999.uco, as.vector)) # put it in a dataframe
dim(df)

[1] 64 999

df[1:5,1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
1 9 15 2 6 23
2 5 18 2 4 16
3 2 8 1 3 4
4 4 3 2 2 4
5 2 3 1 1 0

This is to put the codon usage into a data.frame. Note that the codons are
in row and the coding sequences are in columns. This is more convenient for the
following because groups for within and between analyses are usually handled
by row.

row.names(df) <- names(ec999.uco[[1]]) # add codon names
df[1:5,1:5]

ECFOLE.FOLE ECMSBAG.MSBA ECNARZYW.C.NARV ECNARZYW.C.NARW ECNARZYW.C.NARY
aaa 9 15 2 6 23
aac 5 18 2 4 16
aag 2 8 1 3 4
aat 4 3 2 2 4
aca 2 3 1 1 0

100 CHAPTER 7. MULTIVARIATE ANALYSES

This is to keep a trace of codon names, just in case we would like to re-order
the dataframe df. This is important because we can now play with the data at
will without loosing any critical information.

ec999.coa <- dudi.coa(df = df, scannf = FALSE) # run global correspondence analysis
ec999.coa

Duality diagramm
class: coa dudi
$call: dudi.coa(df = df, scannf = FALSE)

$nf: 2 axis-components saved
$rank: 63
eigen values: 0.05536 0.02712 0.02033 0.01884 0.01285 ...
vector length mode content

1 $cw 999 numeric column weights
2 $lw 64 numeric row weights
3 $eig 63 numeric eigen values

data.frame nrow ncol content
1 $tab 64 999 modified array
2 $li 64 2 row coordinates
3 $l1 64 2 row normed scores
4 $co 999 2 column coordinates
5 $c1 999 2 column normed scores
other elements: N

This is to run global correspondence analysis of codon usage. We have set
the scannf parameter to FALSE because otherwise the eigenvalue bar plot is
displayed for the user to select manually the number of axes to be kept.

facaa <- as.factor(aaa(translate(s2c(c2s(rownames(df)))))) # define a factor for amino-acids
facaa

[1] Lys Asn Lys Asn Thr Thr Thr Thr Arg Ser Arg Ser Ile Ile Met Ile Gln His
[19] Gln His Pro Pro Pro Pro Arg Arg Arg Arg Leu Leu Leu Leu Glu Asp Glu Asp
[37] Ala Ala Ala Ala Gly Gly Gly Gly Val Val Val Val Stp Tyr Stp Tyr Ser Ser
[55] Ser Ser Stp Cys Trp Cys Leu Phe Leu Phe
21 Levels: Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe ... Val

This is to define a factor for amino-acids. The function translate() use by
default the standard genetic code and this is OK for E. coli.

ec999.syn <- wca(x = ec999.coa, fac = facaa, scannf = FALSE) # run synonymous codon usage analysis
ec999.syn

Within analysis
call: wca.dudi(x = ec999.coa, fac = facaa, scannf = FALSE)
class: within dudi

$nf (axis saved) : 2
$rank: 43
$ratio: 0.6438642

eigen values: 0.04855 0.0231 0.01425 0.007785 0.006748 ...

vector length mode content
1 $eig 43 numeric eigen values
2 $lw 64 numeric row weigths
3 $cw 999 numeric col weigths
4 $tabw 21 numeric class weigths
5 $fac 64 numeric factor for grouping

data.frame nrow ncol content
1 $tab 64 999 array class-variables
2 $li 64 2 row coordinates
3 $l1 64 2 row normed scores
4 $co 999 2 column coordinates
5 $c1 999 2 column normed scores
6 $ls 64 2 supplementary row coordinates
7 $as 2 2 inertia axis onto within axis

This is to run the synonymous codon usage analysis. The value of the ratio

component of the object ec999.syn shows that most of the variability is at the
synonymous level, a common situation in codon usage studies.

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 101

ec999.btw <- bca(x = ec999.coa, fac = facaa, scannf = FALSE) # run non-sysnonymous codon usage analysis <=> amino-acid usage
ec999.btw

Between analysis
call: bca.dudi(x = ec999.coa, fac = facaa, scannf = FALSE)
class: between dudi

$nf (axis saved) : 2
$rank: 20
$ratio: 0.3561358

eigen values: 0.01859 0.0152 0.01173 0.01051 0.008227 ...

vector length mode content
1 $eig 20 numeric eigen values
2 $lw 21 numeric group weigths
3 $cw 999 numeric col weigths

data.frame nrow ncol content
1 $tab 21 999 array class-variables
2 $li 21 2 class coordinates
3 $l1 21 2 class normed scores
4 $co 999 2 column coordinates
5 $c1 999 2 column normed scores
6 $ls 64 2 row coordinates
7 $as 2 2 inertia axis onto between axis

This is to run the non-sysnonymous codon usage analysis, or amino-acid
usage analysis.

x <- ec999.syn$co[,1]
y <- ec999.btw$co[,2]
if(cor(x,y) < 0) y <- -y
kxy <- kde2d(x,y, n = 100)
nlevels <- 25
breaks <- seq(from = min(kxy$z), to = max(kxy$z), length = nlevels + 1)
col <- cm.colors(nlevels)
image(kxy, breaks = breaks, col = col, xlab = "First synonymous factor",
ylab = "Second non-synonymous factor", xlim = c(-0.5, 0.5),
ylim = c(-0.3, 0.3), las = 1,
main = "The second factor for amino-acid variability is\ncorrelated with gene expressivity")
contour(kxy, add = TRUE, nlevels = nlevels, drawlabels = FALSE)
box()
abline(c(0,1), lty=2)
abline(lm(y~x))
legend("topleft", lty = c(2,1), legend = c("y = x", "y = lm(y~x)"), inset = 0.01, bg = "white")

102 CHAPTER 7. MULTIVARIATE ANALYSES

−0.4 −0.2 0.0 0.2 0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

The second factor for amino−acid variability is
correlated with gene expressivity

First synonymous factor

S
ec

on
d

no
n−

sy
no

ny
m

ou
s

fa
ct

or

y = x
y = lm(y~x)

This is to plot the whole thing. We have extracted the coding sequences
coordinates on the first synonymous factor and the second non-synonymous
factor within x and y, respectively. Because we have many points, we use the
two-dimensional kernel density estimation provided by the function kde2d()

from package MASS.

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Wed Jun 1 16:40:24 2016

• LATEX compilation time was: June 2, 2016

7.2. SYNONYMOUS AND NON-SYNONYMOUS ANALYSES 103

aaa a prec p h tot gc
1 Ala A pyr 1 5 12 h
2 Cys C 3pg 7 9 25 m
3 Asp D oaa 1 6 13 m
4 Glu E akg 3 6 15 m
5 Phe F 2 pep, eryP 13 19 52 l
6 Gly G 3pg 2 5 12 h
7 His H penP 20 9 38 m
8 Ile I pyr, oaa 4 14 32 l
9 Lys K oaa, pyr 4 13 30 l

10 Leu L 2 pyr, acCoA 3 12 27 l
11 Met M oaa, Cys, -pyr 10 12 34 m
12 Asn N oaa 3 6 15 l
13 Pro P akg 4 8 20 h
14 Gln Q akg 4 6 16 m
15 Arg R akg 11 8 27 h
16 Ser S 3pg 2 5 12 m
17 Thr T oaa 3 8 19 m
18 Val V 2 pyr 2 11 23 m
19 Trp W 2 pep, eryP, PRPP, -pyr 28 23 74 m
20 Tyr Y eryP, 2 pep 13 18 50 l

Table 7.4: Aerobic cost of amino-acids in Escherichia coli and G+C classes to
be loaded with data(aacost).

104 CHAPTER 7. MULTIVARIATE ANALYSES

CHAPTER 8

Nonparametric statistics

Palmeira, L. Lobry, J.R.

8.1 Introduction

Nonparametric statistical methods were initially developped to study variables
for which little or nothing is known concerning their distribution. This makes
them particularly suitable for statistical analysis of biological sequences, in par-
ticular for the study of over- and under-representation of k-letter words (cf
section number 8.3).

8.2 Elementary nonparametric statistics

8.2.1 Introduction

Those rank statistics are those that were available under the ANALSEQ soft-
ware [38, 30]. Formulae were taken from [11]. We consider here a sequence of
booleans, for instance:

(x <- rep(c(T,F),10))

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[13] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

We note N the total number of elements in the vector:

(N <- length(x))

[1] 20

We note M the total number of TRUE elements in the vector:

(M <- sum(x))

[1] 10

We note ω the ranks of TRUE elements:

105

106 CHAPTER 8. NONPARAMETRIC STATISTICS

(omega <- which(x))

[1] 1 3 5 7 9 11 13 15 17 19

With one exception1, the statistics names are the same as in the ANALSEQ
software.

As a practical application, we want to study the isochore structure in Mus
musculus chromosome 1 using non-overlapping windows of 100 kb. Data were
computed this way:

choosebank("ensembl")
n <- 196 # Mus musculus chromosome size in Mb (ceil of)
myseq <- gfrag("MOUSE_1", 1, n*10^6)
res <- rep(-1, 10*n)
for(w in seq(1, nchar(myseq), by = 10^5)){
res[i] <- GC(s2c(substr(myseq, start = w, stop = w + 10^5 - 1)))
i <- i + 1

}
res <- res[res >= 0]
res[res == 0] <- NA
res <- 100*res
closebank()
save(res, file = "chr1.RData")

The folowing representation follows the conventions used in Fig 2 from [71].

load("chr1.RData")
n <- length(res)
xx <- seq_len(n)/10
plot(xx, res, type = "l", las = 1,
ylab = "G+C content [%]",
main = "Isochores in mouse chromosome 1", xaxt = "n",
xlab = "Position on the chromosome [Mb]")
axis(1, at = seq(0,200,by=10))
breaks <- c(0, 37.5, 42.5, 47.5, 52.5, 100)
cut(res, breaks = breaks,
labels = c("darkblue", "blue", "yellow", "orange", "red"),
ordered=T) -> lev
segments(x0 = xx, y0 = min(res, na.rm = TRUE), x1=xx, y1=res,col=as.character(lev),lend="butt")
segments(x0 = xx[is.na(res)], y0 = min(res,na.rm=T), x1 = xx[is.na(res)], y1=max(res,na.rm=T),
col = grey(0.7))
lines(xx, res)
abline(h=breaks, lty = 3)

35

40

45

50

Isochores in mouse chromosome 1

Position on the chromosome [Mb]

G
+

C
 c

on
te

nt
 [%

]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

The gray area represent undocumented parts of the chromosome, we won’t
consider them in the following and recode the sequence in TRUE and FALSE if
the values are above or below the median, respectively:

yy <- res[!is.na(res)]
n <- length(yy)
xx <- seq_len(n)/10
hline <- median(yy)
plot (yy ~ xx, type="n", axes=FALSE, ann=FALSE)
polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)), col = "black", border=NA)

1for GC in the ANALSEQ software renamed as CC here

8.2. ELEMENTARY NONPARAMETRIC STATISTICS 107

usr <- par("usr")
rect(usr[1], usr[3], usr[2], hline, col="white", border=NA)
lines(xx, yy)
abline (h=hline)
box()
axis(1)
axis(2, las = 1)
title(xlab = "Position on the chromosome [Mb]", ylab = "G+C content [%]",
main = "Isochores in mouse chromosome 1")

0 50 100 150 200

35

40

45

50

Isochores in mouse chromosome 1

Position on the chromosome [Mb]

G
+

C
 c

on
te

nt
 [%

]

Our logical vector is therefore defined as follows:

appli <- yy > median(yy)
head(appli)

[1] FALSE FALSE FALSE FALSE FALSE FALSE

tail(appli)

[1] TRUE TRUE FALSE FALSE FALSE TRUE

8.2.2 Rank sum

The statistic SR is the sum of the ranks of TRUE elements.

SR =
∑
j∈ω

j

-*----------- ==> SR low (18)

---------***--*** ==> SR high (81)

E(SR) = M(N + 1)
2

V(SR) = M(N + 1)(N−M)
12

SR <- function(bool, N = length(bool), M = sum(bool)){
stopifnot(is.logical(bool))
SR <- sum(seq_len(N)[bool])
E <- M*(N + 1)/2
V <- M*(N + 1)*(N - M)/12
return(list(SR = SR, stat = (SR - E)/sqrt(V)))

}
SR(s2c("**-***-----------") == "*")

$SR
[1] 18

$stat
[1] -2.84605

SR(s2c("---------***--***") == "*")

108 CHAPTER 8. NONPARAMETRIC STATISTICS

$SR
[1] 81

$stat
[1] 2.713602

Here is a way to obtain the same result using the standard wilcox.test()

function to make a Wilcoxon’s rank sum test [98]:

SRh <- s2c("---------***--***") == "*"
x <- seq_len(length(SRh))
x[!SRh] <- -1*x[!SRh]
wilcox.test(x)$statistic

V
81

The probabilities for all possibe outcomes for the rank sums are given by

dwilcox() but note the M(M+1)
2 shift:

m <- sum(SRh)
n <- length(SRh) - m
dwilcox(x = 0:(n*m), m = m, n = n) -> pdf
plot(x = 0:(m*n) + m*(m+1)/2, y = pdf, xlab = "Possible rank sums",
ylab = "Density", main = paste("---------***--*** : N =", length(SRh), "M =", sum(SRh)),
pch = 19)
points(SR(SRh)$SR, dwilcox(x = SR(SRh)$SR - m*(m+1)/2, m = m, n = n), col = "red",
pch = 19)
arrows(x0 = SR(SRh)$SR, y0 = 0.01, x1 = SR(SRh)$SR, y1 = 0.0015, length = 0.1)
text(SR(SRh)$SR, 0.01, "Observed\nvalue", pos = 3)

20 30 40 50 60 70 80

0.
00

0.
01

0.
02

0.
03

0.
04

−−−−−−−−−***−−*** : N = 17 M = 6

Possible rank sums

D
en

si
ty

Observed
value

Real case application

SR(appli)$stat

[1] 10.73121

The rank sum is higher than expected at random, there is an excess of GC
rich regions at the rigth end (3’end) of the chromosome.

8.2. ELEMENTARY NONPARAMETRIC STATISTICS 109

8.2.3 Rank variance

This statistics is the variance of ranks:

VR =
∑
j∈ω

(j − N + 1
2)2

------****------- ==> VR low (6)

----------* ==> VR high (323)

E(VR) = M(N + 1)(N− 1)
12

V(VR) = M(N−M)(N + 1)(N + 2)(N− 2)
180

VR <- function(bool, N = length(bool), M = sum(bool)){
stopifnot(is.logical(bool))
VR <- sum ((seq_len(N)[bool] - (N + 1)/2)^2)
E <- (M*(N + 1)*(N - 1))/12
V <- (M*(N - M)*(N + 1)*(N + 2)*(N - 2))/180
return(list(VR = VR, stat = (VR - E)/sqrt(V)))

}
VR(s2c("------****-------") == "*")

$VR
[1] 6

$stat
[1] -2.33786

VR(s2c("***----------****") == "*")

$VR
[1] 323

$stat
[1] 3.470246

We can use simulations to have an idea of the probability density function
of the rank variance, for instance:

VRh <- s2c("***----------****") == "*"
replicate(5000, VR(sample(VRh))$VR) -> simVR
hist(simVR, col = grey(0.7), main = paste("***----------**** : N =",
length(VRh), "M =", sum(VRh)), xlab = "Possible rank variances", proba = TRUE)
lines(density(simVR), lwd = 2)
arrows(VR(VRh)$VR, 0.004, VR(VRh)$VR, 0, le = 0.1)

110 CHAPTER 8. NONPARAMETRIC STATISTICS

−−−−−−−−−−* : N = 17 M = 7

Possible rank variances

D
en

si
ty

50 100 150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Real case application

VR(appli)$stat

[1] 4.43128

The variance of ranks is higher than expected at random, there is an excess
of GC rich regions at the telomeric ends of the chromosome.

8.2.4 Clustering around the observed centre

Let note C(ω) the observed centre:

C(ω) =
{

ω
(M+1

2
)

if M is odd
ω
(M

2 + 1
)

if M is even

The statistic CC2 is the dispersion around C(ω) is defined by:

CC =
∑
j∈ω

|j − C(ω)|

---*****--------- ==> CC low (6)

----------- ==> CC high (30)

Noting bxc the floor of x, we have:

E(CC) =
(N + 1)bM

2 cb
M+1

2 c
M + 1

2 the original notation was GC in the ANALSEQ software, we use CC instead to avoid a
collision with the GC() function to compute the G+C content.

8.2. ELEMENTARY NONPARAMETRIC STATISTICS 111

and

V(CC) =
{ (M−1)(M+3)(N+1)(N−M)

48(M+2) if M is odd
M(N+1)(N−M)(M2+2∗M+4)

48(M+1)2 if M is even

CC <- function(bool, N = length(bool), M = sum(bool)){
stopifnot(is.logical(bool))
C <- median(seq_len(N)[bool])
GC <- sum(abs(seq_len(N)[bool] - C))
E <- ((N + 1)*floor(M/2)*floor((M + 1)/2))/(M + 1)
if(M %% 2 == 1)
V <- ((M - 1)*(M + 3)*(N + 1)*(N - M))/(48*(M + 2))

else
V <- (M*(N + 1)*(N - M)*(M^2 + 2*M + 4))/(48*(M + 1)^2)

return(list(GC = GC, stat = (GC - E)/sqrt(V)))
}
CC(s2c("---*****---------") == "*")

$GC
[1] 6

$stat
[1] -2.645751

CC(s2c("***-------***----") == "*")

$GC
[1] 30

$stat
[1] 1.337987

Real case application

CC(appli)$stat

[1] 3.25226

The dispersion around the observed centre is higher than expected at ran-
dom, there is a trend for GC rich sequences to avoid this centre.

8.2.5 Number of runs

The statistics NS is the number of runs in the sequence:

--***---***--***- ==> NS low (7)

-*-*-*-*-*-*-*-*- ==> NS high (17)

E(NS) = 2M(N−M)
N + 1

V(NS) = 2M(N−M)(2M(N−M)−N)
N2(N− 1)

NS <- function(bool, N = length(bool), M = sum(bool)){
stopifnot(is.logical(bool))
NS <- length(rle(bool)$lengths)
DMNmM <- 2*M*(N - M)
E <- DMNmM/N + 1
V <- (DMNmM*(DMNmM - N))/(N*N*(N - 1))
return(list(NS = NS, stat = (NS - E)/sqrt(V)))

}
NS(s2c("--***---***--***-") == "*")

112 CHAPTER 8. NONPARAMETRIC STATISTICS

$NS
[1] 7

$stat
[1] -1.242299

NS(s2c("-*-*-*-*-*-*-*-*-") == "*")

$NS
[1] 17

$stat
[1] 3.786054

The same result can be obtained with the function runs.test() from pack-
age tseries [96] this way:

library(tseries)
s2c("-*-*-*-*-*-*-*-*-") == "*" -> NSh
tseries::runs.test(as.factor(NSh))$statistic

Standard Normal
3.786054

Real case application

NS(appli)$stat

[1] -34.25156

The number of runs is much less than expected at random, there is a trend
for GC rich sequences to aggregate in consecutive runs: this is the isochore
structure.

8.2.6 Multiple clusters

The statistics GM is the variance of the length nk of FALSE runs (including
runs of length zero) between two TRUE. Let note:

• nk(ω) the number of FALSE between ω(k − 1) and ω(k) for 2 ≤ k ≤ M.

• n1(ω) the number of FALSE before ω(1).

• nM+1(ω) the number of FALSE after ω(M).

GM = 1
M

M+1∑
i=1

(
ni(ω)− N−M

M + 1

)2

-*-*-*-*-*-*-*-*- ==> GM low (0)

-------***- ==> GM high (3.5)

E(GM) = (N + 1)(N−M)
(M + 1)(M + 2)

V(GM) = 4(N−M− 1)(N + 1)(N + 2)(N−M)
M(M + 2)2(M + 3)(M + 4)

8.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 113

GM <-function(bool, N = length(bool), M = sum(bool)){
stopifnot(is.logical(bool))
XGM <- (N - M)/(M + 1)
LS0 <- GM <- 0
for(i in seq_len(N)){

if(bool[i]){
GM <- GM + (LS0 - XGM)^2
LS0 <- 0

} else {
LS0 <- LS0 + 1

}
}
GM <- (GM + (LS0 - XGM)^2)/M
E <- ((N + 1)*(N - M))/((M +1)*(M + 2))

V <- (4*(N - M - 1)*(N + 1)*(N + 2)*(N - M))/(M*(M + 2)^2*(M + 3)*(M + 4))
return(list(GM = GM, stat = (GM - E)/sqrt(V)))

}
GM(s2c("-*-*-*-*-*-*-*-*-") == "*")

$GM
[1] 0

$stat
[1] -1.863782

GM(s2c("***------***-***-") == "*")

$GM
[1] 3.511111

$stat
[1] 3.279144

Real case application

GM(appli)$stat

[1] 353.0584

The number of cluster is much higher than expected at random, there is a
trend for GC rich sequences to aggregate in clusters: this is again the reflect of
the isochore structure in this chromosome.

8.3 Dinucleotides over- and under-representation

8.3.1 Introduction

We will briefly describe two statistics for the measure of dinucleotide over- and
under-representation in sequences [41, 69], which can both be computed with
seqinR. We will subsequently use them to answer the long-time controversial
question concerning the relationship between UV exposure and genomic content
in bacteria [89, 2].

8.3.2 The rho statistic

The ρ statistic (rho()), presented in [41], measures the over- and under-representation
of two-letter words:

ρ(xy) = fxy

fx × fy

where fxy and fx are respectively the frequencies of dinucleotide xy and
nucleotide x in the studied sequence. The underlying model of random gener-
ation considers dinucleotides to be formed according to the specific frequencies
of the two nucleotides that compose it (ρxy = 1). Departure from this value
characterizes either over- or under-representation of dinucleotide xy.

114 CHAPTER 8. NONPARAMETRIC STATISTICS

Distribution for dinucleotide AT on 500 random sequences

ρ statistic

D
en

si
ty

0.90 0.95 1.00 1.05 1.10

0

2

4

6

8

10

12
normal fit
ρ = 1

Figure 8.1: Distribution of the ρ statistic computed on 500 random sequences
of length 6000. The vertical dotted line is centered on 1. The curve draws the
fitted normal distribution.

We expect the ρ statistic of a randomly generated sequence to be neither
over- nor under-represented. Indeed, when we compute the ρ statistic on 500
random sequences, we can fit a normal distribution which is centered on 1 (see
Fig. 8.1)

set.seed(1)
n <- 500
di <- 4
lseq <- 6000
rhoseq <- replicate(n, rho(sample(s2c('acgt'), size = lseq, replace = TRUE)))
x <- seq(min(rhoseq[di,]), max(rhoseq[di,]), length.out = 1000)
y <- dnorm(x, mean = mean(rhoseq[di,]), sd = sd(rhoseq[di,]))
histo <- hist(rhoseq[di,], plot = FALSE)
plot(histo, freq = FALSE, xlab = expression(paste(rho, " statistic")),
main = paste("Distribution for dinucleotide",
toupper(labels(rhoseq)[[1]][di]), "on", n, "random sequences"),
las = 1, col = grey(0.8), border = grey(0.5),
ylim = c(0, max(c(y, histo$density))))

lines(x, y, lty = 1, col = "red")
abline(v = 1, lty = 3, col = "blue", lwd = 2)
legend("topleft", inset = 0.01, legend = c("normal fit",
expression(paste(rho, " = 1"))), lty = c(1, 3),
col = c("red", "blue"), lwd = c(1, 2))

The downside of this statistic, is that the model against which we compare
the sequence under study is fixed. For several types of sequences, dinucleotides

8.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 115

are far from being formed by mere chance (CDS, ...). In this case, the model
used in the ρ statistic becomes trivial, and the over- or under-representations
measured are mainly due to the strong constraints acting on those sequences.

8.3.3 The z-score statistic

The z-score statistic (zscore()) is inspired by the ρ statistic, and is defined
so that several different models can be used for the determination of over- and
under-representation [69]. It allows for a finer measure of over- and under-
representation in sequences, according to the chosen model.

The z-score is defined as follows:

zscore = ρxy − E(ρxy)√
V ar(ρxy)

where E(ρxy) and V ar(ρxy) are the expected mean and variance of ρxy

according to a given model that describes the sequence.
This statistic follows the standard normal distribution, and can be computed

with several different models of random sequence generation based on permu-
tations from the original sequence (modele argument). More details on those
models can be obtained in the documentation for the zscore() function, by
simply typing ?zscore.

For instance, if we want to measure the over- and under-representation of
dinucleotides in CDS sequences, we can use the codon model, which measures
the over- and under-representations existing in the studied sequence once codon
usage bias has been erased. For intergenic sequences, or sequences for which no
good permutation model can be established, we can use the base model.

8.3.4 Comparing statistics on a sequence

Let’s have a look at what these different statistics can show. First, we will
extract a CDS sequence of Escherichia coli ’s chromosome from the Genome
Reviews database. Let’s use, for instance, the following CDS:

choosebank("greviews")
coli <- query("coli","N=U00096_GR ET T=CDS ET K=2.3.1.79@")
sequence <- getSequence(coli$req[[1]])
annot <- getAnnot(coli$req[[1]])
closebank()
save(sequence, file = "sequence.RData")
save(annot, file = "annot.RData")

load("annot.RData")
cat(annot, sep="\n")

FT CDS complement(478591..479142)
FT /codon_start=1
FT /evidence="1: Evidence at protein level "
FT /gene_id="IGI28831209"
FT /gene_name="maa"
FT /gene_synonym="ECK0453"
FT /gene_synonym="ylaD"
FT /locus_tag="b0459"
FT /product="Maltose O-acetyltransferase "
FT /EC_number="2.3.1.79"
FT /function="maltose O-acetyltransferase activity "
FT /protein_id="AAC73561.1"
FT /db_xref="EMBL:AAB40214.1"

116 CHAPTER 8. NONPARAMETRIC STATISTICS

FT /db_xref="EMBL:CAA11147.1"
FT /db_xref="EcoGene:EG14239"
FT /db_xref="GO:0008925"
FT /db_xref="HOGENOM:HBG282173"
FT /db_xref="HOGENOM:HBG699746"
FT /db_xref="InterPro:IPR001451"
FT /db_xref="InterPro:IPR011004"
FT /db_xref="InterPro:IPR018357"
FT /db_xref="PDB:1OCX"
FT /db_xref="UniParc:UPI000002EA96"
FT /db_xref="UniProtKB/Swiss-Prot:P77791"
FT /transl_table=11
FT /translation="MSTEKEKMIAGELYRSADETLSRDRLRARQLIHRYNHSLAEEHTL
FT RQQILADLFGQVTEAYIEPTFRCDYGYNIFLGNNFFANFDCVMLDVCPIRIGDNCMLAP
FT GVHIYTATHPIDPVARNSGAELGKPVTIGNNVWIGGRAVINPGVTIGDNVVVASGAVVT
FT KDVPDNVVVGGNPARIIKKL"
FT /%(C+G)="CG<50%"
FT /note="C+G content in third codon positions = 47.8 % "

We can see that this CDS encodes a maltose O-acetyltransferase protein.
We will now compare the three following nonparametric statistics:

• the ρ statistic,

• the z-score statistic with base model,

• and the z-score statistic with codon model.

The z-score statistic has been modified to incorporate an exact analytical
calculation of the base model where the old version (seqinR 1.1-1 and previ-
ous versions) incorporated an approximation for large sequences. This has been
possible with the help of Sophie Schbath [84], and the new version of this calcu-
lation can be obtained with the argument exact set to TRUE (FALSE being the
default). The analytical solution for the codon model is from [24]. The following
code was used to produce figure 8.2:

load("sequence.RData")
rhocoli <- rho(sequence)
zcolibase <- zscore(sequence, model = 'base', exact = TRUE)
zcolicodon <- zscore(sequence,model = 'codon', exact = TRUE)
par(mfrow = c(3, 1), lend = "butt", oma = c(0,0,2,0), mar = c(3,4,0,2))
col <- c("green", "blue", "orange", "red")
plot(rhocoli - 1, ylim = c(-0.5,0.5), las = 1,
ylab = expression(rho), lwd = 10, xaxt = "n",
col = col)

axis(1, at = 1:16, labels = toupper(words(2)))
abline(h = 0)
plot(zcolibase, ylim = c(-2.5,2.5), las = 1,
ylab = "zscore with base model", lwd = 10, xaxt = "n",
col = col)

axis(1, at = 1:16, labels = toupper(words(2)))
abline(h = 0)
plot(zcolicodon, ylim = c(-2.5,2.5), las = 1,
ylab = "zscore with codon model", lwd = 10, xaxt = "n",
col = col)

axis(1, at = 1:16, labels = toupper(words(2)))
abline(h = 0)
mtext("Comparison of the three statistics", outer = TRUE, cex = 1.5)

The first two panels in figure 8.2 are almost identical: this is due to the way
the z-score statistic has been built. The statistic computed with the base model
is a reflection of the ρ statistic. The difference being that the z-score follows
a standard normal distribution, which makes easier the comparisons between
the results from the base model and the ones from the codon model. The last
pannel (z-score with codon model), is completely different: almost all over- and

8.3. DINUCLEOTIDES OVER- AND UNDER-REPRESENTATION 117

−0.4

−0.2

0.0

0.2

0.4

ρ

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

−2

−1

0

1

2

zs
co

re
 w

ith
 b

as
e

m
od

el

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

−2

−1

0

1

2

zs
co

re
 w

ith
 c

od
on

 m
od

el

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

Comparison of the three statistics

Figure 8.2: Three different non-parametric statistics (from left to right: ρ,
zscore with base model, zscore with codon model), computed on the same
sequence from Escherichia coli. In order to make the figures easily comparable,
we substracted 1 to the rho() results, so that all 3 statistics are centered at 0.

118 CHAPTER 8. NONPARAMETRIC STATISTICS

under-representations have been erased. We can safely say that these over- and
under-representations were due to codon usage bias.

On the last panel, four dinucleotides stand out: CC and TT seem rather
under-represented, CT and TC rather over-represented. This means that, in
this sequence, codons ending with a given pyrimidine tend to be more frequently
followed by a codon starting with the other pyrimidine than expected by chance.
This is not a universal feature of Escherichia coli, and is probably due to the
amino-acid composition of this particular sequence. It seemed a funny example,
as the following part will also relate to pyrimidine dinucleotides. However, what
we see on this CDS from Escherichia coli has nothing to do with what follows...

8.4 UV exposure and dinucleotide content

In the beginning of the 1970’s, two contradictory papers considered the question
of the impact of UV exposure on genomic content. Both papers had strong
arguments for either side, and the question remained open until recently [69].

8.4.1 The expected impact of UV light on genomic content

On this controversy, the known facts are: pyrimidine dinucleotides (CC, TT,
CT and TC) are the major DNA target for UV-light [85]; the sensitivities of
the four pyrimidine dinucleotides to UV wavelengths differ and depend on the
micro-organism [85]:

G+C content CC (%) CT + TC (%) TT (%)
Haemophilus influenzae 62 5 24 71

Escherichia coli 50 7 34 59
Micrococcus lysodeikticus 30 26 55 19

Table 8.1: Proportion of dimers formed in the DNA of three bacteria after
irradiation with 265 nm UV light. Table adapted from [85].

The hypothesis presented by Singer and Ames [89] is that pyrimidine dinu-
cleotides are avoided in light-exposed micro-organisms. At the time, only G+C
content is available, and – based exclusively on the sensitivity of the four pyrim-
idine dinucleotides in an Escherichia coli chromosome – they hypothesize that
a high G+C will result in less pyrimidine target. Indeed, they find that bacteria
exposed to high levels of UV have higher G+C content than the others. Bak et
al. [2] strongly criticize their methodology, but no clear cut answer is achieved.

In an Escherichia coli chromosome, it is true that a sequence with a high
G+C content will contain few phototargets: the following code was used to
produce figure 8.3.

worstcase <- function(gc){
c <- gc
t <- (1-gc)
(0.59*t*t + 0.34*t*c + 0.07*c*c)/2

}
randomcase <- function(gc){
c <- gc/2
t <- (1-gc)/2

8.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 119

0.59*t*t + 0.34*t*c + 0.07*c*c
}
bestcase <- function(gc){
c <- (gc)/2
t <- (1-gc)/2
if ((c + t) <= 0.5){
0

} else {
c <- (c + t - 0.5)/2
t <- (c + t - 0.5)/2
0.59*t*t + 0.34*t*c + 0.07*c*c
}

}
xval <- seq(from = 0, to = 100, length = 100)
sapply(xval/100, randomcase) -> yrand
sapply(xval/100, worstcase) -> yworst
sapply(xval/100, bestcase) -> ybest
plot(xval, 100*yworst, las = 1, type = "l", lwd = 2, lty = 1 ,
xlab = "G+C content [%]",
ylab = "Phototargets weighted density [%]",
main = "Estimated as in Escherichia coli chromosome",
ylim = c(0, max(100*yworst)))
points(xval,100*yrand,type='l',lwd=2,lty=2)
points(xval,100*ybest,type='l',lwd=2,lty=3)
abline(v=c(25,75),lty=2)
arrows(25, 25, 75, 25, code = 1,le = 0.1)
arrows(25, 25, 75, 25,code = 2,le = 0.1)
text(50,25,"Biological range",pos=3)

In a Micrococcus lysodeikticus sequence (the following code was used to pro-
duce figure 8.4), we can see that this is no longer true...

worstcase <- function(gc){
c <- gc
t <- (1-gc)
(0.19*t*t + 0.55*t*c + 0.26*c*c)/2

}
randomcase <- function(gc){
c <- gc/2
t <- (1-gc)/2
0.19*t*t + 0.55*t*c + 0.26*c*c

}
bestcase <- function(gc){
c <- (gc)/2
t <- (1-gc)/2
if ((c + t) <= 0.5){
0

} else {
c <- (c + t - 0.5)/2
t <- (c + t - 0.5)/2
0.19*t*t + 0.55*t*c + 0.26*c*c
}

}
xval <- seq(from = 0, to = 100, length = 100)
sapply(xval/100, randomcase) -> yrand
sapply(xval/100, worstcase) -> yworst
sapply(xval/100, bestcase) -> ybest
plot(xval, 100*yworst, las = 1, type = "l", lwd = 2, lty = 1 ,
xlab = "G+C content [%]",
ylab = "Phototargets weighted density [%]",
main = "Estimated as in Micrococcus lysodeikticus chromosome",
ylim = c(0, max(100*yworst)))
points(xval,100*yrand,type='l',lwd=2,lty=2)
points(xval,100*ybest,type='l',lwd=2,lty=3)
abline(v=c(25,75),lty=2)
arrows(25, 25, 75, 25, code = 1,le = 0.1)
arrows(25, 25, 75, 25,code = 2,le = 0.1)
text(50,25,"Biological range",pos=3)

These two figures (figure 8.3 and 8.4) show that the density of phototargets
depends on:

• the degree of aggregation of pyrimidine dinucleotides in the sequence,

120 CHAPTER 8. NONPARAMETRIC STATISTICS

0 20 40 60 80 100

0

5

10

15

20

25

30

Estimated as in Escherichia coli chromosome

G+C content [%]

P
ho

to
ta

rg
et

s
w

ei
gh

te
d

de
ns

ity
 [%

]

Biological range

Figure 8.3: Density of phototargets, weighted by their frequency in the Es-
cherichia coli chromosome, and calculated for different G+C contents and for
three kinds of random genomes. The weights are as follows: 0.59 ∗ ftt + 0.34 ∗
(ftc + fct) + 0.07 ∗ fcc (where fxy is the frequency of dinucleotide xy in the
specified genome). Three models of random genomes are analyzed. In the worst
case (solid curve), the genome is the concatenation of a sequence of pyrimidines
and a sequence of purines: all pyrimidines are involved in a pyrimidine dinu-
cleotide. In the best case (dotted curve), the genome is an unbroken succession
of pyrimidine-purine dinucleotides: no pyrimidine is involved in a pyrimidine
dinucleotide. In the ”random case” (dashed curve), the frequency of a pyrimi-
dine dinucleotide is the result of chance (fxy = fx × fy).

8.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 121

0 20 40 60 80 100

0

2

4

6

8

10

12

Estimated as in Micrococcus lysodeikticus chromosome

G+C content [%]

P
ho

to
ta

rg
et

s
w

ei
gh

te
d

de
ns

ity
 [%

]

Figure 8.4: Density of phototargets, weighted by their frequency in the Mi-
crococcus lysodeikticus chromosome, and calculated for different G+C con-
tents and for three kinds of random genomes. The weights are as follows:
0.19 ∗ ftt + 0.55 ∗ (ftc + fct) + 0.26 ∗ fcc. See figure 8.3 for more details.

122 CHAPTER 8. NONPARAMETRIC STATISTICS

• the sensitivities of the four pyrimidine dinucleotides.

Instead of looking at G+C content, which is an indirect measure of the im-
pact of UV exposure on genomic content, let us look at pyrimidine dinucleotide
content.

Are CC, TT, CT and TC dinucleotides avoided in light-exposed bacteria?

8.4.2 The measured impact of UV light on genomic con-
tent

On all available genomes (as retrieved from Genome Reviews database on June
16, 2005), we have computed the mean of the z-score with the base model on all
intergenic sequences, and the mean of the z-score with the codon model on all
CDS. The results show that there is no systematic under-representation of none
of the four pyrimidine dinucleotides (see figure 8.5 produced by the following
code).

data(dinucl)
par(mfrow = c(2, 2), mar = c(4,4,0.5,0.5)+0.1)
myplot <- function(x){
plot(dinucl$intergenic[, x], dinucl$coding[, x],
xlab = "intergenic", ylab = "coding",
las = 1, ylim = c(-6, 4),
xlim = c(-3, 3), cex = 0)
rect(-10,-10,-1.96,10,col="yellow", border = "yellow")
rect(1.96,-10,10,10,col="yellow", border = "yellow")
rect(-10,-10,10,-1.96,col="yellow", border = "yellow")
rect(-10,1.96,10,10,col="yellow", border = "yellow")
abline(v=0,lty=3)
abline(h=0,lty=3)
abline(h=-1.96,lty=2)
abline(h=+1.96,lty=2)
abline(v=-1.96,lty=2)
abline(v=+1.96,lty=2)
points(dinucl$intergenic[, x], dinucl$coding[, x], pch = 21,
col = rgb(.1,.1,.1,.5), bg = rgb(.5,.5,.5,.5))
legend("bottomright", inset = 0.02, legend = paste(substr(x,1,1), "p", substr(x,2,2), " bias", sep = ""), cex = 1.25, bg = "white")
box()

}
myplot("CT")
myplot("TC")
myplot("CC")
myplot("TT")

However, we have little or no information on the exposure of this bacteria to
UV light. In order to fully answer this question, let’s do another analysis and
look at Prochlorococcus marinus genome.

Prochlorococcus marinus seems to make an ideal model for investigating this
hypothesis. Three completely sequenced strains are available in the Genome
reviews database: two of these strains are adpated to living at a depth of more
than 120 meters (accession numbers AE017126 and BX548175), and the other
one at a depth of 5 meters (accession number BX548174).

Living at a depth of 5 meters, or at a depth of more than a 120 meters
is totally different in terms of UV exposure: the residual intensity of 290 nm
irradiation (UVb) in pure water can be estimated to 56% of its original intensity
at 5 m depth and to less than 0.0001% at more than 120 m depth. For this
reason, two of the Prochlorococcus marinus strains can be considered to be
adapted to low levels of UV exposure, and the other one to much higher levels.

8.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 123

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

intergenic

co
di

ng

CpT bias

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

intergenic

co
di

ng

TpC bias

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

intergenic

co
di

ng

CpC bias

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

intergenic

co
di

ng

TpT bias

Figure 8.5: Plot of the mean zscore statistics for intergenic sequences (x-
axis) and for coding sequences (y-axis), for each of the four pyrimidine din-
ucleotides. On each plot, a dot corresponds to the mean of these two statistics
in a given prokaryote chromosome. The null x and y axis (dotted lines), and
the 5% limits of significance for the standard normal distribution (dashed lines)
are plotted as benchmarks. It should be noted that the variability within one
chromosome is sometimes as great as that between different chromosomes.

124 CHAPTER 8. NONPARAMETRIC STATISTICS

Is pyrimidine dinucleotide content different in these three strains? And is it
linked to their UV exposure?

We have computed the z-score with the codon model on all CDS from each
of these three strains (as retrieved from Genome Reviews database on June 16,
2005). Figure 8.6 was produced with the following code:

data(prochlo)
oneplot <- function(x){
plot(density(prochlo$BX548174[, x]),
ylim = c(0,0.4), xlim = c(-4,4), lty=3,
main = paste(substr(x,1,1), "p", substr(x,2,2), " bias", sep = ""),
xlab="",ylab="",las=1, type = "n")

rect(-10,-1,-1.96,10, col = "yellow", border = "yellow")
rect(1.96,-1,10,10, col = "yellow", border = "yellow")
lines(density(prochlo$BX548174[, x]),lty=3)
lines(density(prochlo$AE017126[, x]),lty=2)
lines(density(prochlo$BX548175[, x]),lty=1)
abline(v=c(-1.96,1.96),lty=5)
box()

}
par(mfrow=c(2,2),mar=c(2,3,2,0.5) + 0.1)
oneplot("CT")
oneplot("TC")
oneplot("CC")
oneplot("TT")

Figure 8.6 shows that there is no difference between the relative abundances
of pyrimidine dinucleotides in these three strains. We can say that pyrimidine
dinucleotides are not avoided, and that the hypothesis by Singer and Ames
[89] no longer stands [69]. The following code was used to produce figure 8.7
that summarizes the relationship between pyrimidine dinucleotides and UV-
exposure.

data(prochlo)
par(oma = c(0, 0, 3, 0), mfrow = c(1, 2), mar = c(5, 4, 0, 0), cex = 1.5)
example(waterabs, ask = FALSE) #left figure
abline(v=260, lwd = 2, col = "red")
par(mar = c(5, 0, 0, 2))
plot(seq(-5, 3, by = 1), seq(0, 150, length = 9), col = "white",
ann = FALSE, axes = FALSE, xaxs = "i", yaxs = "i")

axis(1, at = c(-1.96, 0, 1.96), labels = c(-1.96, 0, 1.96))
lines(rep(-1.96, 2),c(0, 150),lty=2)
lines(rep(1.96, 2), c(0, 150),lty=2)
title(xlab = "zscore distribution", cex = 1.5, adj = 0.65)
selcol <- c(6, 8, 14, 16)
z5 <- prochlo$BX548174[, selcol]
z120 <- prochlo$AE017126[, selcol]
z135 <- prochlo$BX548175[, selcol]
todo <- function(who, xx, col = "black", bottom, loupe){

dst <- density(who[, xx])
sel <- which(dst$x >= -3)
lines(dst$x[sel], dst$y[sel]*loupe + (bottom), col = col)

}
todo2 <- function(who, bottom, loupe){
todo(who, "CC", "blue", bottom, loupe)
todo(who, "CT", "red", bottom, loupe)
todo(who, "TC", "green", bottom, loupe)
todo(who, "TT", "black", bottom, loupe)

}
todo3 <- function(bottom, who, leg, loupe = 90){
lines(c(-5,-3), c(150 - leg, bottom + 20))
rect(-3,bottom,3,bottom+40)
text(-2.6,bottom+38, paste(leg, "m"))
todo2(who, bottom, loupe)

}
todo3(bottom = 110, who = z5, leg = 5)
todo3(bottom = 50, who = z120, leg = 120)
todo3(bottom = 5, who = z135, leg = 135)

8.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 125

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

CpT bias

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

TpC bias

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

CpC bias

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

TpT bias

Figure 8.6: Each figure shows the distributions of the zscore in all coding se-
quences corresponding to each of the three strains of Prochlorococcus marinus.
In each figure, the distribution for the MED4 (a high-light adapted strain) is
shown as a solid line; the distribution for the SS120 (a low-light adapted strain)
is shown as a dashed line, and the distribution for the MIT 9313 (a low-light
adapted strain) is shown as a dotted line. The 5% limits of significance for the
standard normal distribution (dashed vertical lines) are plotted as benchmarks.

126 CHAPTER 8. NONPARAMETRIC STATISTICS

Figure 8.7: This figure is from figure 2.7 in [68], see also the example section
in data(prochlo). The left panel represents the absorbtion of light by pure
water in the visible spectrum (gradient in color) and in the near UV (gradient
in gray scale). Corresponding data were compiled from [76] and [55]. For DNA,
the biological relevant wavelength is at 260 nm (red vertical line) corresponding
to its maximum for light absorbtion. The right panel shows the distribution
of the z-codon statistic for the four pyrimidine dinucleotides (viz CpC CpT
TpC TpT) for the coding sequences of three different ecotypes (5 m, 120 m,
135 m) of Prochlorococcus marinus. The complete genome sequences accession
numbers are BX548175 (P. marinus MIT9313 [80] 5 m, high UV exposure),
AE017126 (P. marinus SS120 strain CCMP1375 [15] 120 m, low UV exposure)
and BX548174 (P. marinus MED4 [80] 135 m, low UV exposure).

legend(-4.5,110,c('CpC','CpT','TpC','TpT'),lty=1,pt.cex=cex,
col=c('blue','red','green','black'))

mtext(expression(paste("Dinucleotide composition for three ",
italic("Prochlorococcus marinus")," ecotypes")), outer = TRUE, cex = 2,

line = 1)

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

8.4. UV EXPOSURE AND DINUCLEOTIDE CONTENT 127

There were two compilation steps:

• compilation time was: Wed Jun 1 16:46:33 2016

• LATEX compilation time was: June 2, 2016

128 CHAPTER 8. NONPARAMETRIC STATISTICS

Part III

Appendix

129

CHAPTER 9

FAQ: Frequently Asked Questions

Lobry, J.R.

9.1 How can I compute a score over a moving
window?

As an illustration, suppose that we want to reproduce a part of figure 1 from
[56] whose screenshot is given is given in figure 9.1.

The score here is the GC-skew computed in non-overlapping windows of
10 Kb for a 1.6 Mb sequence. We need a fragment of Escherchia coli K12
chromosome from 67.4 min to 4.1 min on the genetic map. The sequence is
directly available with data(m16j). Let’s put this fragment into the string
myseq:

data(m16j)
myseq <- m16j

Figure 9.1: Screenshot of a part of figure 1 from [56]. The GC-skew is computed
in non-overlapping windows of 10 Kb along a 1.6 Mb fragment of the Escherichia
coli chromosome. The sequence is available with data(m16j).

131

132 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

This is not exactly the same sequence that was used in [56] but very close
to1. We define a function called gcskew() that computes our score for a given
string x:

gcskew <- function(x){
if(!is.character(x) || length(x) > 1) stop("single string expected")
tmp <- tolower(s2c(x))
nC <- sum(tmp == "c")
nG <- sum(tmp == "g")
if(nC + nG == 0) return(NA)
return(100*(nC - nG)/(nC + nG))

}
gcskew("GCCC")

[1] 50

gcskew("GCCCNNNNNN")

[1] 50

Note some defensive programming tricks used here:

• We check that the argument x is a single string.

• We expand it as vector of single chars with s2c() only within the function
to avoid big objects in the workspace.

• We force to lower case letters with tolower() so that we can use upper
case letters too.

• We avoid division by zero and return NA in this case.

• We do not divide by the length of x but by the actual number of C and
G so that ambiguous bases such as N do not introduce biases.

We move now along the sequence to compute the GC-skew:

step <- 10000
wsize <- 10000
starts <- seq(from = 1, to = nchar(myseq), by = step)
starts <- starts[-length(starts)] # remove last one
n <- length(starts)
result <- numeric(n)
for(i in seq_len(n)){

result[i] <- gcskew(substr(myseq, starts[i], starts[i] + wsize - 1))
}

The following code2 was used to produce figure 9.2.

xx <- starts/1000
yy <- result
n <- length(result)
hline <- 0
plot (yy ~ xx, type="n", axes=FALSE, ann=FALSE, ylim = c(-10, 10))
polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)), col = "black", border=NA)
usr <- par("usr")
rect(usr[1], usr[3], usr[2], hline, col="white", border=NA)
lines(xx, yy)

1 The sequence used in [56] was a 1,616,174 bp fragment obtained from the concatenation
of nine overlapping sequences (U18997, U00039, L10328, M87049, L19201, U00006, U14003,
D10483, D26562 [90, 8, 13, 75, 5, 99]). Ambiguities have been resolved since then and its was
a chimeric sequence from K-12 strains MG1655 and W3110 [33], the sequence used here is
from strain MG1655 only [6].

2This code is adapted from the code at http://www.stat.auckland.ac.nz/~paul/

RGraphics/chapter3.html for figure 3.25 in Paul Murrell’s book [63]. This book is a must
read if you are interested by ’s force de frappe in the graphic domain.

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html

9.2. HOWCAN I EXTRACT JUST A FRAGMENT FROMMY SEQUENCE?133

0 200 400 600 800 1000 1200 1400 1600

−10

−5

0

5

10

GC skew in Escherich ia col i

position (Kbp)

(C
−

G
)/

(C
+

G
)

%

origin of replication

Figure 9.2: Re-creation of figure 9.1 from scratch.

abline (h=hline)
box()
axis(1, at = seq(0,1600, by = 200))
axis(2, las = 1)
title(xlab = "position (Kbp)", ylab = "(C-G)/(C+G) %",
main = expression(paste("GC skew in ", italic(Escherichia~~coli))))
arrows(860, 5.5, 720, 0.5, length = 0.1, lwd = 2)
text(860, 5.5, "origin of replication", pos = 4)

You can now play with the wsize and step parameters to explore the signal
(but note that with overlapping windows your points are no more independent)
or use all the smoothing tools available under . Figure 9.3 shows for in-
stance what can be obtained with the lowess() function with two values for
the smoothing parameter f. The corresponding code is as follows:

plot(xx,yy, col = "grey", type = "b", ylim = c(-10,10), las = 1, xaxt = "n",
main = expression(paste("GC skew in ", italic(Escherichia~~coli))),
xlab = "position (Kbp)", ylab = "(C-G)/(C+G) %")
axis(1, at = seq(0,1600, by = 200))
lines(smooth <- lowess(xx,yy, f = 0.05), lwd = 1)
polycurve <- function(x, y, base.y = min(y), ...) polygon(x = c(min(x), x, max(x)), y = c(base.y, y, base.y), ...)
up <- smooth$y > 0
polycurve(smooth$x[up], smooth$y[up], base.y = 0, col = rgb(0,0,1,0.5))
lines(lowess(xx,yy, f = 0.2), lwd = 2, col = "red")
legend("topright", inset = 0.01, legend = c("f = 0.05", "f = 0.20"), lwd = c(1,2), col = c("black", "red"))
abline(h=0)
arrows(860, 5.5, 720, 0.5, length = 0.1, lwd = 2)
text(860, 5.5, "origin of replication", pos = 4)

9.2 How can I extract just a fragment from my
sequence?

Use the generic function getFrag() :

choosebank("emblTP")
mylist <- query("mylist", "AC=A00001")
getFrag(mylist$req[[1]], begin = 10, end = 20)

134 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

−10

−5

0

5

10

GC skew in Escherich ia col i

position (Kbp)

(C
−

G
)/

(C
+

G
)

%

0 200 400 600 800 1000 1200 1400 1600

f = 0.05
f = 0.20

origin of replication

Figure 9.3: Playing with the smoothing parameter f of the lowess() function.

[1] "gatggagaatt"
attr(,"seqMother")
[1] "A00001"
attr(,"begin")
[1] 10
attr(,"end")
[1] 20
attr(,"class")
[1] "SeqFrag"

closebank()

9.3 How do I compute a score on my sequences?

In the example below we want to compute the G+C content in third codon
positions for complete ribosomal CDS from Escherichia coli :

choosebank("emblTP")
ecribo <- query("ecribo","sp=escherichia coli ET t=cds ET k=ribosom@ ET NO k=partial")
myseqs <- sapply(ecribo$req, getSequence)
(gc3 <- sapply(myseqs, GC3))

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

At the amino-acid level, we may get an estimate of the isoelectric point of
the proteins this way:

sapply(sapply(myseqs, getTrans), computePI)

[1] 6.624309 7.801329 10.864793 5.931989 7.830476 6.624309 7.801329
[8] 9.203410 9.826485 5.674672 7.154423 6.060457 6.313741 5.571446
[15] 9.435422 4.310747 6.145496 4.876054 11.006430 10.876041 6.624309
[22] 7.801329 10.864793 9.346289 9.203410 5.877050 5.931989 9.934988
[29] 5.920490 6.612505 6.624309 6.624309 7.801329 10.864793 5.931989
[36] 11.182505 9.598944 6.624309 10.864793 9.203410 11.031938 5.858421

9.4. WHYDO I HAVE NOT EXACTLY THE SAMEG+C CONTENT AS IN CODONW?135

[43] 5.858421 11.777516 11.777511 10.619175 11.365738 9.460987 10.864793
[50] 13.002373 9.845859 10.584868 11.421252 10.248320 11.031943 10.402075
[57] 4.863862 6.612505 9.681066 11.150310 11.182505 11.043607 6.624309
[64] 6.612505 6.624309 4.310747

Note that some pre-defined vectors to compute linear forms on sequences are
available in the EXP data.

As a matter of convenience, you may encapsulate the computation of your
favorite score within a function this way:

GC3m <- function(list, ind = 1:list$nelem) sapply(sapply(list$req[ind], getSequence), GC3)
GC3m(ecribo)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

GC3m(ecribo, 1:10)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324

9.4 Why do I have not exactly the same G+C
content as in codonW?

This question was raised (and solved) by Oliver Clay in an e-mail (23-AUG-
2006). The program codonW was written in C as part of John Peden’s PhD
thesis on Codon Usage [73] and is available at http://codonw.sourceforge.

net/. The reason for the small differences in G+C content between the two
programs is that the default behavior in codonW is to remove the stop codon
before computations. Here is one way of removing the stop codon under :

gc3nos <- sapply(myseqs, function(s) GC3(s[1:(length(s) - 3)]))

As compared with the previous result, the difference is small but visible:

plot(x = gc3, y = gc3nos, las =1, main="Stop codon removal effect on G+C content
in third codon positions", xlab = "With stop codon", ylab ="Stop codons removed")
abline(c(0,1))

http://codonw.sourceforge.net/
http://codonw.sourceforge.net/

136 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

0.35 0.40 0.45 0.50 0.55 0.60

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Stop codon removal effect on G+C content
in third codon positions

With stop codon

S
to

p
co

do
ns

 r
em

ov
ed

CodonW was released with a test file called input.dat, here are the first 10
lines of the file copied from CodonWSourceCode_1_4_4:

inputdatfile <- system.file("sequences/input.dat", package = "seqinr")
cat(readLines(inputdatfile,n=10), sep = "\n")

>YCG9 Probable 1377 residues Pha 0 Code 0
ATGAATATGCTCATTGTCGGTAGAGTTGTTGCTAGTGTTGGGGGAAGCGGACTTCAAACG
CTTTGCTTTGTTATTGGTTGTACGATGGTTGGTGAAAGGTCACGTCCATTGGTGATTTCC
ATCCTAAGTTGTGCATTTGCTGTAGCTGCTATCGTTGGTCCTATAATCGGAGGTGCCTTT
ACAACCCATGTTACCTGGAGGTGGTGCTTCTATATCAATCTTCCTATCGGTGGTCTTGCC
ATTATTATGTTTTTACTCACATATAAGGCCGAGAATAAGGGTATACTTCAACAAATTAAA
GATGCTATAGGAACAATCTCGAGCTTTACTTTTAGTAAGTTCAGACACCAAGTTAATTTT
AAAAGACTTATGAATGGCATAATCTTCAAGTTTGACTTCTTTGGTTTTGCCCTCTGCTCT
GCAGGGCTGGTCCTTTTCCTACTGGGGCTAACCTTTGGTGGTAATAAATATAGTTGGAAC
TCTGGCCAAGTCATCGCATATTTGGTTTTGGGTGTCTTACTTTTTATTTTTTCATTGGTG

This is a FASTA file that we import under with:

input <- read.fasta(file = inputdatfile)
names(input)

[1] "YCG9" "YCG8" "ALPHA2" "ALPHA1" "CHA1" "KRR1"
[7] "PRD1" "KAR4" "PBN1" "LRE1" "APA1" "YCE9"
[13] "YCE8" "YCE7" "YCE5" "YCE6" "YCE4" "PDI1"
[19] "GLK1" "YCD8" "SRO9" "YCD6" "YCD5" "YCD3"
[25] "STE50" "HIS4" "BIK1" "FUS1" "YC08" "AGP1"
[31] "LEU2" "NFS1" "BUD3" "GBP2" "ILV6" "CWH36"
[37] "PEL1" "RER1" "CDC10" "MRPL32" "YCP4" "CIT2"
[43] "YCP7" "SAT4" "RVS161" "YCQ0" "ADP1" "PGK1"
[49] "POL4" "YCQ7" "SRD1" "MAK32" "PET18" "MAK31"
[55] "HSP30" "YCR3" "SYN" "YCR6" "GNS1" "FEN2"
[61] "RIM1" "CRY1" "YCS2" "YCS3" "GNS1" "RBK1"
[67] "PHO87" "BUD5" "MATALPHA2" "MATALPHA1" "TSM1" "YCT5"
[73] "PETCR46" "YCT7" "YCT9" "ARE1" "RSC6" "THR4"
[79] "CTR86" "PWP2" "YCU9" "YCV1" "G10" "HCM1"
[85] "RAD18" "CYPR" "YCW1" "YCW2" "SSK22" "SOL2"
[91] "ERS1" "PAT1" "SRB8" "YCX3" "TUP1" "YC16"
[97] "ABP1" "KIN82" "MSH3" "CDC39" "YCY4" "A2"
[103] "GIT1" "YCZ0" "YCZ1" "YCZ2" "YCZ3" "PAU3"
[109] "YCZ5" "YCZ6" "YCZ7"

9.4. WHYDO I HAVE NOT EXACTLY THE SAMEG+C CONTENT AS IN CODONW?137

The file input.out contains the values obtained with codonW for the GC
content and GC3s content:

inputoutfile <- system.file("sequences/input.out", package = "seqinr")
cat(readLines(inputoutfile, n=10), sep = "\n")

title GC3s GC
YCG9_Probable__________13 0.335 0.394
YCG8________573_residues_ 0.439 0.446
ALPHA2________633_residue 0.328 0.351
ALPHA1________528_residue 0.345 0.379
CHA1_________1083_residue 0.328 0.394
KRR1__________951_residue 0.364 0.384
PRD1_________2139_residue 0.430 0.397
KAR4_________1008_residue 0.354 0.383
PBN1_________1251_residue 0.330 0.386

input.res <- read.table(inputoutfile, header = TRUE)
head(input.res)

title GC3s GC
1 YCG9_Probable__________13 0.335 0.394
2 YCG8________573_residues_ 0.439 0.446
3 ALPHA2________633_residue 0.328 0.351
4 ALPHA1________528_residue 0.345 0.379
5 CHA1_________1083_residue 0.328 0.394
6 KRR1__________951_residue 0.364 0.384

Let’s try to reproduce the results for the G+C content, we know that we
have to remove the last stop codon:

input.gc <- sapply(input, function(s) GC(s[1:(length(s)-3)]))
max(abs(input.gc - input.res$GC))

[1] 0.0004946237

plot(x = input.gc, y = input.res$GC, las = 1,
xlab = "Results with GC()", ylab = "Results from codonW",
main = "Comparison of G+C content results")
abline(c(0,1))

0.35 0.40 0.45 0.50 0.55

0.35

0.40

0.45

0.50

0.55

Comparison of G+C content results

Results with GC()

R
es

ul
ts

 fr
om

 c
od

on
W

138 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

The results are consistent if we consider that we have 3 significant digits in
the file input.out. Now, let’s try to reproduce the results for G+C in third
codon positions:

input.gc3 <- sapply(input, function(s) GC3(s[1:(length(s)-3)]))
max(abs(input.gc3 - input.res$GC3s))

[1] 0.054

plot(x = input.gc3, y = input.res$GC3s, las = 1,
xlab = "Results with GC3()", ylab = "Results from codonW",
main = "Comparison of G+C content in third codon positions results")
abline(c(0,1))

0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

Comparison of G+C content in third codon positions results

Results with GC3()

R
es

ul
ts

 fr
om

 c
od

on
W

There is clearly a problem here. Looking into the documentation of codonW,
GC3s is the G+C content in third codon position after removing non-synonymous
and stop codons (those corresponding to Met, Trp, Stp). Let’s remove these
codons:

codons <- words()
names(codons) <- sapply(codons, function(c) aaa(translate(s2c(c), numcode = 1)))
okcodons <- codons[! names(codons) %in% c("Met", "Trp", "Stp")]
gc3s <- function(s){
tmp <- splitseq(s)
tmp <- tmp[tmp %in% okcodons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3(tmp)

}
input.gc3s <- sapply(input, gc3s)
max(abs(input.gc3s - input.res$GC3s))

[1] 0.0004980843

plot(x = input.gc3s, y = input.res$GC3s, las = 1,
xlab = "Results with GC3()", ylab = "Results from codonW",
main = "Comparison of G+C content in third codon positions results\n(Met, Trp and Stp codons excluded)")
abline(c(0,1))

9.4. WHYDO I HAVE NOT EXACTLY THE SAMEG+C CONTENT AS IN CODONW?139

0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

Comparison of G+C content in third codon positions results
(Met, Trp and Stp codons excluded)

Results with GC3()

R
es

ul
ts

 fr
om

 c
od

on
W

The results are now consistent. But thinking more about it there is still a
problem with the codons for Ile:

codons[names(codons) == "Ile"]

Ile Ile Ile
"ata" "atc" "att"

There are three codons for Ile. If the distribution of the four bases was
uniform and selectively neutral in third codon position of synonymous codons,
then we would expect to get a G+C of 50% in quartet and duet codons at third
codons positions because they all have the same number of W (A or T)and S
(C or G) bases in third position. But for Ile we have two codons ending in W
versus only one in S so that we would get a G+C of 1

3 instead of 1
2 . This point

was clearly stated [92] by Sueoka in 1988:

G + C Content of the Three Codons Positions. In the present
analysis, observed G + C contents of the first, second, and third
codon positions (P1, P2, and P3, respectively) are corrected average
G + C contents of the three codon positions that are calculated from
56 triplets out of 64. Because of the inequality of α and γ at the
third codon position, the three stop codons (TAA, TAG, and TGA)
and the three codons for isoleucine (ATT, ATC, and ATA) were
excluded in calculation of P3, and two single codons for methionine
(ATG) and tryptophan (TGG) were excluded in all three (P1, P2,
and P3)

Let’s compute P3 and compare it with GC3s:

140 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

P3codons <- codons[! names(codons) %in% c("Met", "Trp", "Ile", "Stp")]
P3 <- function(s){
tmp <- splitseq(s)
tmp <- tmp[tmp %in% P3codons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3(tmp)

}
input.P3 <- sapply(input, P3)
max(abs(input.P3 - input.res$GC3s))

[1] 0.02821505

plot(x = input.P3, y = input.res$GC3s, las = 1,
xlab = "Results with P3", ylab = "Results from codonW GC3s",
main = "Comparison of P3 and GC3s")
abline(c(0,1))

0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

Comparison of P3 and GC3s

Results with P3

R
es

ul
ts

 fr
om

 c
od

on
W

 G
C

3s

This is not exactly the same, the maximum observed difference here is about
3%. In practice, P3, GC3, and GC3s are only slightly different [93].

9.5 How do I get a sequence from its name?

This question is adapted from an e-mail (22 Jun 2006) by Gang Xu. I know
that the UniProt (SwissProt) entry of my protein is P08758, if I know its name3,
how can I get the sequence?

choosebank("swissprot")
myprot <- query("myprot","AC=P08758")
getSequence(myprot$req[[1]])

3More exactly, this is the accession number. Sequence names are not stable over time, it’s
always better to use the accession numbers.

9.5. HOW DO I GET A SEQUENCE FROM ITS NAME? 141

[1] "M" "A" "Q" "V" "L" "R" "G" "T" "V" "T" "D" "F" "P" "G" "F" "D" "E" "R"
[19] "A" "D" "A" "E" "T" "L" "R" "K" "A" "M" "K" "G" "L" "G" "T" "D" "E" "E"
[37] "S" "I" "L" "T" "L" "L" "T" "S" "R" "S" "N" "A" "Q" "R" "Q" "E" "I" "S"
[55] "A" "A" "F" "K" "T" "L" "F" "G" "R" "D" "L" "L" "D" "D" "L" "K" "S" "E"
[73] "L" "T" "G" "K" "F" "E" "K" "L" "I" "V" "A" "L" "M" "K" "P" "S" "R" "L"
[91] "Y" "D" "A" "Y" "E" "L" "K" "H" "A" "L" "K" "G" "A" "G" "T" "N" "E" "K"
[109] "V" "L" "T" "E" "I" "I" "A" "S" "R" "T" "P" "E" "E" "L" "R" "A" "I" "K"
[127] "Q" "V" "Y" "E" "E" "E" "Y" "G" "S" "S" "L" "E" "D" "D" "V" "V" "G" "D"
[145] "T" "S" "G" "Y" "Y" "Q" "R" "M" "L" "V" "V" "L" "L" "Q" "A" "N" "R" "D"
[163] "P" "D" "A" "G" "I" "D" "E" "A" "Q" "V" "E" "Q" "D" "A" "Q" "A" "L" "F"
[181] "Q" "A" "G" "E" "L" "K" "W" "G" "T" "D" "E" "E" "K" "F" "I" "T" "I" "F"
[199] "G" "T" "R" "S" "V" "S" "H" "L" "R" "K" "V" "F" "D" "K" "Y" "M" "T" "I"
[217] "S" "G" "F" "Q" "I" "E" "E" "T" "I" "D" "R" "E" "T" "S" "G" "N" "L" "E"
[235] "Q" "L" "L" "L" "A" "V" "V" "K" "S" "I" "R" "S" "I" "P" "A" "Y" "L" "A"
[253] "E" "T" "L" "Y" "Y" "A" "M" "K" "G" "A" "G" "T" "D" "D" "H" "T" "L" "I"
[271] "R" "V" "M" "V" "S" "R" "S" "E" "I" "D" "L" "F" "N" "I" "R" "K" "E" "F"
[289] "R" "K" "N" "F" "A" "T" "S" "L" "Y" "S" "M" "I" "K" "G" "D" "T" "S" "G"
[307] "D" "Y" "K" "K" "A" "L" "L" "L" "L" "C" "G" "E" "D" "D"

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Wed Jun 1 17:13:01 2016

• LATEX compilation time was: June 2, 2016

142 CHAPTER 9. FAQ: FREQUENTLY ASKED QUESTIONS

CHAPTER 10

GNU Free Documentation License

Version 1.2, November 2002
Copyright ©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

10.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the

143

144 CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein.
The ”Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as ”you”. You accept the license if
you copy, modify or distribute the work in a way requiring permission under
copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not ”Transparent” is
called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title

10.2. VERBATIM COPYING 145

page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”En-
dorsements”, or ”History”.) To ”Preserve the Title”of such a section when
you modify the Document means that it remains a section ”Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

10.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

10.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy

146 CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

10.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and

10.4. MODIFICATIONS 147

publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

148 CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

10.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in
the various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
”Dedications”. You must delete all sections Entitled ”Endorsements”.

10.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

10.7 AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

10.8. TRANSLATION 149

10.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

10.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

150 CHAPTER 10. GNU FREE DOCUMENTATION LICENSE

CHAPTER 11

Release notes

Lobry, J.R. Necşulea, A. Palmeira, L. Penel, S.

Introduction

The release notes are listed in reverse chronological order: most recent on top.

3.1 series

release 3.1-5

• As pointed out by e-mail on 30-MAY-2016 by Haruo Suzuki a call to
getLength(ec999) yielded spurious output and many warnings. This is
now fixed.

• As pointed out by e-mail on 30-MAY-2016 by Haruo Suzuki there was a
bug in the documentation of the functions recstat(), draw.recstat(),
test.co.recstat() and test.li.recstat(). They were all looking for
data in a package seqinr2 that doesn’t exist. This is now fixed and the
dontrun directive has been removed to detect automatically any further
problem.

• As pointed out by e-mail on 25-MAY-2016 by Haruo Suzuki the read.fasta()
function can import sequences directly from local gzipped files. A new
smallAA.fasta.gz file has been added to document this in the exam-
ples of the read.fasta() function. This is however no more true if you
try to read directly the sequences from a compressed file accessed via its
URL. A workaround now given in the manual is to use a construct like
read.fasta(gzcon(url(myurl))).

• As pointed out by e-mail on 12-MAY-2016 by Haruo Suzuki the documen-
tation for the rho() function was misleading because in the refered article

151

152 CHAPTER 11. RELEASE NOTES

[42] the statistic was computed from the sequence concatenated with its
inverted complement. This is now fixed.

3.0 series

release 3.0-11

• In query(), NS=taxon_name and NK=keyword_name are now documented.
The manual was also updated.

• The broken default link in get.db.growth() has been fixed so that now
dia.db.growth() works as well.

• Function write.fasta() has gained an as.string argument so that it can
handle sequences provided as strings instead of vectors of single character.

release 3.0-10

release 3.0-0

• As pointed out by Leonor Palmeira on the rpourlesnuls diffusion list
on 20-MAY-2010 there was no constructor for objects of class alignment.
There is now a as.alignment() function.

2.0 series

release 2.0-9

• As pointed out by Avril Coghlan on the seqinR diffusion list on 17-MAR-
2010 there was a bug in the getAnnot() function. This is now fixed.

• As suggested by Avril Coghlan on the seqinR diffusion list on 02-MAR-
2010 the function rho() has gained a wordsize argument.

• The argument word in function count() is now more explicitely called
wordsize.

• The example section in file read.alignment.Rd has gained a new quality
control sanity check.

• The File argument that was deprecated since seqinR release 1.1-3 in func-
tion read.alignment() is no more valid. Just use file instead.

• As pointed by Darren Obbard on the seqinr diffusion list on 05-MAR-2010
there was a memory leak problem when calling the read.alignment()

function with the fasta format. This is now fixed for the fasta format, but
the remaining formats have not been checked for this problem.

153

release 2.0-8

• As pointed by Oliver Clay and Lionel Guy on the seqinr diffusion list on 19-
FEB-2010 there was a bug in getSequence.list() function that confused
write.fasta() when all sequences were of the same length (a similar
bug was reported by Yann Lesecque on 30-MAR-2009 for the getTrans()

function). This is now fixed.

• The message printed when function where.is.this.acc() fails to find a
database with a given accession number for a sequence is now completed
to warn the user that (s)he may have supplied a sequence name instead
of a genuine accession number.

• The title in the documentation for the function write.fasta() was changed
to make clear that more than one sequence can be written at once. The
function now does not return anything instead of NULL previously. The
argument file.out was moved to the left so that it is easier now to use
it by position during function call.

release 2.0-7

• A new utility function where.is.this.acc() was introduced to loop over
all availabale ACNUC databases to look for a given sequence accession
number. This is useful when you have a sequence accession number and
you don’t know in which database it is present. The documentation
of the function choosebank() was also changed to make a link to this
function. As suggested by Avril Coghlan, the function has an argument
stopAtFirst defaulting to TRUE that stops the search at the first database
found with the given accession number.

• As pointed out 05 Nov 2009 by Darren Obbard on the seqinr diffusion list
the argument forceToLower = FALSE in function comp() was not hon-
ored. This is now fixed and a new sanity check was added in the example
section of the documentation of the function.

• Documentation for the function uco() for codon usage table computation
was updated with new bibliographical references [58, 94].

• As basic regular expressions are defunct since R 2.11, the extended argu-
ment in functions words.pos() and trimSpace() was no more necessary.
It is now deleted.

release 2.0-6

• The old argument File in function read.fasta() that was deprecated
since release 1.1-3 is no more valid. Just use file instead.

• New function stutterabif() to estimate stutter ratio.

• Function plotabif() has a new default value for its ylim argument:
c(min(y), max(y)) now instead of c(0, max(y)) previously to help plot-
ing data with a highly negative baseline.

154 CHAPTER 11. RELEASE NOTES

• Function peakabif() now returns in addition an estimate of the baseline
value.

• New utility baselineabif() to estimate the baseline value.

• There was time shift of one datapoint unit for the peak locations returned
by the peakabif() function, this is now fixed and the documentation is
more explicit for the units used.

• New utility function fastacc() to compute the number of alleles in com-
mon between a genetic profile and a database of genetic profiles.

release 2.0-5

• New utility function circle() to draw a circle.

• Two more examples of files to be imported with the readBins() and
readPanels() functions are now available in the abif folder: NGM_Bins.txt
and NGM_Pa.txt, respectively.

• New function plotPanels() to plot amplicon size ranges of STR kits data.

• New utility function col2alpha() to add a transparency chanel to a stan-
dard R color.

• New ABIF example file samplefsa2ps.fsa used in the read.abif() func-
tion to reproduce figure 1A from [47].

• New function move() aliased as mv() to rename an object without deep
copy.

• New function swap() to exchange two objects.

release 2.0-4

• Configuration files to be imported by the readBins() function may have
trailling tabulations, as for instance in the test file Prototype_PowerPlex_EP01_Bins.txt
for allele 9 at locus D3S1358 and for allele 14 at locus D12S391. This was
a source of trouble during importation. This is now fixed and the above
mentioned file is used as a quality control. A warning is now issued if the
number of columns in the data.frame corresponding to a locus is not 4 as
expected.

• Configuration files to be imported by the readPanels() function may
have more than one tabulation separator between two data items in a way
that could be different from one line to another one. There is an example
of such a case in the test file Prototype_PowerPlex_EP01_Pa.txt where
locus D10S1248 and D22S1045 are followed by a single tabulation when
all remaining loci are followed by two tabulations. This was a source of
trouble during importation. This is now fixed by preprocessing the input
so that all consecutive tabulations are replaced by a single one. The above
mentioned test file is now used as a quality control.

155

release 2.0-3

• As pointed out on the seqinr diffusion list on 23-APR-2009 by Darren
Obbard there was an obscure error message when function kaks() was
called with an alignment such that the number of nucleotides was not a
multiple of 3 after gap removal. This check was partial as an alignment
with out-of-frame gaps but with a total number of gaps multiple of 3 was
not detected. The new behaviour is that if at least one non ACGT base
is found in a codon, then the whole codon is forced to a gap codon (--).
The documentation of the function has been clarified accordingly, and a
new alignment file DarrenObbard.fasta added in the sequences folder
to check this new behaviour.

• Function readBins() is now more tolerant when there is an extra col-
umn with possibly empty fields in data by forcing the fill argument of
read.table() function to TRUE.

• As pointed out by e-mail on 30-MAR-2009 by Yann Lesecque there was a
bug in the getTrans() function: when applied to a list of sequences with
all the same length the returned result was a matrix instead of a list. This
is now fixed.

• New utility functions readPanels() and readBins() to import data from
GeneMapper configuration files. Four example files are now in the abif

folder.

• Function peakabif() now returns the heights and surfaces of peaks in
addition to their location.

• New utility function al2bp() to convert a forensic microsatellite allele
name into its length in base pairs. Conventions used to name forensic
microsatellite alleles (STR) are described in Bar et al. (1994) [3]. The
name 9.3 means for instance that there are 9 repetitions of the complete
base oligomer and an incomplete repeat with 3 bp.

release 2.0-2

• New ABIF format related functions: plotabif() to plot electrophore-
grams with optonial internal size standard and optional allelic ladder,
peakabif() to locate peaks in electrophoregrams, plotladder() to dis-
play an observed allelic ladder.

• New datasets gs500liz for size standards, identifiler for allelic ladder
names, ECH for allelic ladder raw data and JLO for forensic genetic profile
raw data. The last one is now used as a quality check for the read.abif()
function.

• A new folder called abif has been created under the inst folder. The
purpose of this folder is to contain examples of files in ABIF format so that
the results of the read.abif() function can be checked against expected
results for quality check. It contains for now two duplicated genetic profiles
and two allelic ladders from the same batch experiment.

156 CHAPTER 11. RELEASE NOTES

release 2.0-1

• The useless itemize in the argument section of documentation file stresc.Rd
is now deleted.

• In function words.pos() the default value for parameter extended was
changed from FALSE to TRUE to avoid warnings.

• New experimental function read.abif() to import files in ABIF format
(*.fsa, (*.ab1).

release 2.0-0

• New draft chapter about making RISA in silico added.

• Objects from class qaw created after a call to the query() function have
gained a new generic print method to focus on the most important infor-
mation: number of sequences in the list, list type and the corresponding
request.

• Function query() now allows a missing listname argument. In this case,
list1 is used to store the result.

• Function autosocket() has been changed to behave more friendly with
outdated R versions. This is essentially a backward compatibility issue
that will not be maintained in the future. The function autosocket()

works hard to check that everything is OK with the last opened database,
especially with the socket infos available in banknameSocket$socket thru
its summary() generic. In old R versions (e.g. 2.6.2) this was returning
socket instead of sockconn for the class, yielding an error in seqinR 1.1-7.
The old result is now allowed but a warning is issued.

The 2.0 series started in summer 2008 along with the moving of the seqinr
sources on R-forge.

1.1 series

release 1.1-7

• As suggested by Kurt Hornik two extra cr in the documentation file for
ec999 were deleted.

• Function read.fasta() has gained four new arguments (viz. bfa, sizeof.longlong,
endian, apply.mask) to read DNA binary fasta files in MAQ format.
There is a new ct.bfa file in the sequences folder to check for the MAQ
format reading.

• New dataset pK for the values for the side chain of charged amino acids
from various sources compiled by Joanna Kiraga [46].

• Function words.pos() has gained new arguments that are passed to regexpr()
including the dot-dot-dot argument in case of need in the future. The
documentation has been modified to better explain the difference with the
standard gregexpr() function.

157

• As pointed by e-mail on 28 May 2008 by Kim Milferstedt a function to
compute the consensus for a set of aligned sequences would be helpful.
There is now a function consensus() aliased to con() for this. The
input is either an object from class alignment or a matrix of characters.
The output is either a consensus sequence (using the majority rule, the
majority rule with a threshold, or IUPAC symbols for RNA and DNA
sequences) or a profile, that is a matrix with the count of each possible
character at each position in the alignment.

• In the documentation of the read.alignment() function a link was added
to the read.nexus() function from the ComPairWise package [79].

• New function bma() to find the IUPAC symbol corresponding to a nucleic
sequence.

• New function as.matrix.alignment() to convert an alignment into a
object of class matrix.

• The encoding of line ends in the example file test.mase is now an unix-like
one.

• As pointed by e-mail on 31 May 2008 by Marie Sémon there was no con-
venient function to compute the Codon Adaptation Index [87]. A new
function cai() was introduced with the aim of reproducing exactly the
results from the program codonW that was written by John Peden during
his PhD thesis [73] under the supervision of P.M. Sharp (the most au-
thorative source for CAI computation). A new dataset caitab that was
hard-encoded in codonW for the w values for some species (viz Escherichia
coli, Bacillus subtilis, Saccharomyces cerevisiae) was added. Care was
taken to credit original sources. The E. coli data that was uncredited is
from [87]. The B. subtilis data that was uncredited is from [88] (see the
note of caution in ?caitab before using this one directly to compute CAI
in B. subtilis). The S. cerevisiae data that was credited to [86] dates back
from [87]. A new text file scuco.txt produced by codonW was added in
the sequences folder to check that the CAI results from cai() are consis-
tents with thoses from codonW version 1.4.4 (03-MAR-2005). This legacy
file is used in the example section of the cai() function.

release 1.1-6

• The construct get(getOption("device"))(width = 18, height = 11)

that was used in the example section for data(prochlo) is no more valid
since 2.8.0 (fall 2008). The example has been restricted to work only
with X11, windows and quartz devices.

• As pointed by e-mail on 12 May 2008 by Indranuj Mukherjee there was a
bug in the function oriloc(): when called with a gbk = NULL argument
the function was trying to remove non-existent files, yielding an error. The
bug has been fixed and the documentation of the function oriloc() has
been extended to better explain how to use the arguments seq.fasta and
gbk.

158 CHAPTER 11. RELEASE NOTES

• A reference to [24] was missing in the documentation of function zscore()

for the codon model.

• As suggested by e-mail on 11 Mar 2008 by Christian Gautier, the function
count() has gained a new argument by to control the window step, allow-
ing for instant to count dinucleotides in codon position III-I in a coding
sequence. The example section of the function documentation has been
extended to give an example of counting dinucleotides in position III-I.

alldinuclIIIpI <- s2c("NNaaNatNttNtgNgtNtcNctNtaNagNggNgcNcgNgaNacNccNcaNN")
(resIIIpI <- count(alldinuclIIIpI, word = 2, start = 2, by = 3))

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

stopifnot(all(resIIIpI == 1))

• Function reverse.align() has gained two arguments forceDNAtolower

= TRUE and forceAAtolower = FALSE that are passed to the functions
used to read the sequences. There is now a new dataset revaligntest

used to check the result in the example section of reverse.align().

• As pointed by e-mail on 21 Feb 2008 by Oliver Keatinge Clay function
modifylist() failed to scan in GenBank FEATURES annotation lines.
There is now a new function called prepgetannots(), aliased to pga(),
that allows to set up the annotation lines to be scanned. Called with
default arguments, this function turns on all annotation lines for scan.
This function can also be used to set up partly the annotation lines to be
returned by getAnnot().

• Function choosebank() has gained four arguments (server, blocking,
open, encoding) that are passed to socketConnection(). The value of
the argument verbose is now passed to clientid() which knows now
how to handle it. The encoding argument was introduced to fix a lo-
calization bug on Mac OS X which symptom was a cryptic error mes-
sage in if (res[1] != "0") { after a call to choosebank(). The cul-
prit was an option(encoding = "latin1") that was set up before the
call to choosebank() who called socketConnection() with its default
encoding = getOption("encoding"), preventing readLines() to read
from the socket. The bug was fixed by opening the socket with the native
encoding, which is the current default.

• As pointed by e-mail on 15 Jan 2008 by Stefanie Hartmann, the argument
frame in function count() was misleading for someone with a molecular
biology background. The argument has been replaced by start. The
old argument name is maintained as an alias for backward compatibil-
ity. The example section has been extended to give an example with
the complete human mitochondrion sequence, the corresponding fasta file
(humanMito.fasta) has been added in the sequences directory.

release 1.1-5

Minor release to fix mainly problems in the documentation.

159

• The argument section was empty in autosocket.Rd.

• The details section was empty in countfreelists.Rd and draw.oriloc.Rd.

• The value section was empty in gbk2g2.Rd. The corresponding function
was changed to use a local file for the demo.

• The description section was missing in getFrag.Rd, getLength.Rd, getName.Rd,
getSequence.Rd.

• Documentation of the function dia.bactgensize() to plot the distribu-
tion of bacterial genome size from GOLD data has been ammended to
credit sources [48, 4, 54, 53]. It has gained a new argument maxgensize

defaulting to 20000 to remove outliers. It has also gained a new argument
source for the file to look for raw data, defaulting to an (outdated) local
copy so that the function can be called even when there is no internet
connection.

release 1.1-4 (10-Dec-2007)

Minor release to fix problems found by Kurt Hornik.

• In the DESCRIPTION file License: GPL (>= 2) instead of License: GPL

version 2 or newer.

• The files inst/doc/src/mainmatter/acnuc_sockets.rnw .tex with non-
portable file names were changed to acnucsocket.rnw and acnucsocket.tex.

release 1.1-3

• There is a new chapter to explain how to set up a local ACNUC server on
Unix-like platforms.

• New dataset m16j to make a GC skew plot as in [56].

• New dataset waterabs giving the absorption of light by water. This
dataset was compiled by Palmeira [68] from [55, 76].

• Generic functions getAnnot(), getFrag(), getKeyword(), getLength(),
getLocation(), getName(), getSequence() and getTrans() have gained
methods to handle objects from class list and qaw.

• Functions getAttributsocket() and getNumber.socket() are now dep-
recated, a warning is issued.

• There is a new appendix in which all the examples protected by a dontrun

statment are forced to be executed.

• Function read.fasta() now supports comment lines starting by a semi-
colon character in FASTA files. An example of such a file is provided
in sequences/legacy.fasta. The argument File is now deprecated.
There is a new argument seqonly to import just the sequences with-
out names, annotations and coercion attempts. There is a new argument
strip.desc to remove the leading ’>’ character in annotations (as in
function readFASTA from the Biostrings package [67]). The FASTA file
example someORF.fsa from Biostrings is also added for comparisons.

160 CHAPTER 11. RELEASE NOTES

• Function GC() has gained a new argument NA.GC defaulting to NA to say
what should be returned when the GC content cannot be computed from
data (for instance with a sequence like NNNNNNNNNNNN). The argu-
ment oldGC is now deprecated and a warning is issued. Functions GC1(),
GC2(), GC3() are now simple wrappers for the more general GCpos() func-
tion. The new argument frame allows to take the frame into account for
CDS.

• Function read.alignment() has gained a new argument forceToLower

defaulting to TRUE to force lower case in the character of the sequence
(this is for a smoother interaction with the package ape). The argument
File is now deprecated and a warning is issued when used instead of
file. The example in the function kaks() has been corrected to avoid
this warning when reading the example files.

• New low level utility function acnucclose() and quitacnuc() to close
an ACNUC server. These functions are called by closebank() so that a
simple call to it should be enough.

• New low level utility function clientid() to send the client ID to an
ACNUC server.

• New low level utility function countfreelists() to get the number of
free lists available in an ACNUC server.

• New low level utility function knowndbs() and its shortcut kdb() to get
a description of databases known by an ACNUC server.

• New low level utility function autosocket() to get the socket connection
to the last opened ACNUC database.

• New function countsubseqs() to get the number of subsequences in an
ACNUC list.

• New function savelist() to save sequence names or accession numbers
from an ACNUC list into a local file.

• New function ghelp() to get help from an ACNUC server.

• New function modifylist() to modify a previously existing ACNUC list
by selecting sequences either by length, either by date, either for the pres-
ence of a given string in annotations.

• New low level function getlistate() to ask for information about an
ACNUC list.

• New low level function setlistname() to set the name of a list from an
ACNUC server.

• New function residuecount() to count the total number of residues (nu-
cleotides or aminoacids) in all sequences of an ACNUC list of specified
rank.

• New function isenum() and its shortcut isn() to get the ACNUC number
of a sequence from its name or accession number.

161

• New function prettyseq() to get a text representation of a sequence from
an ACNUC server.

• New function gfrag() to extract sequence identified by name or by num-
ber from an ACNUC server.

• The details of the socket connection are no more stored in the slot socket
for objects of class seqAcnucWeb: this slot is now deleted. As a conse-
quence, the argument socket in function as.SeqAcnucWeb() has been
removed and there is now a new argument socket = "auto" in functions
getAnnot(), getFrag(), geyKeyword(), getLocation(), and getSequence().
The default value "auto" means that the details of the socket connection
are taken automatically when necessary from the last opened bank. The
size of local lists of sequences is reduced by about a third now as compared
to the previous version.

• New function print.seqAcnucWeb() to print objects from class seqAcnucWeb.

• Internal function parser.socket() has been optimized and is about four
times faster now. This decreases the time needed by the query() function.

release 1.1-2

• New function trimSpace() to remove leading and trailing spaces in string
vectors.

• Function splitseq() is no more based on substring(), it is now more
efficient for long sequences.

• A sanity check test was added in the documentation file for the function
syncodons().

• The way this manual is produced is now documented in the doc/src/template/
folder.

• A bug in function oriloc() was reported on 23 Jul 2007 by Michael
Kube: using directly genBank files was no more possible. The culprit
was gbk2g2() that turns genBank files into glimmer files version 2 when
oriloc() default is to use version 3 files. The glimmer.version argument
is now forced to 2 when working with genBank files to fix this problem.

• Function zscore() has now a new argument exact (which is only effective
for the option model = base). This argument, when set to TRUE allows for
the exact analytical computation of the zscore under this model, instead
of the approximation for large sequences. It is set to FALSE by default for
backward compatibility.

release 1.1-1

• A bug was reported by Sylvain Mousset on 14 Jul 2007 in function dist.alignment():
when called with sequences in lower case letters, some sequences were mod-
ified. This should no more be the case:

162 CHAPTER 11. RELEASE NOTES

ali <- list(nb=4, nam=c("speciesA", "speciesB", "speciesC", "speciesD"),
seq=c("ACGT","acgt","ACGT","ACGT"))
class(ali) <- "alignment"
print(ali$seq)

[1] "ACGT" "acgt" "ACGT" "ACGT"

print(dist.alignment(ali))

speciesA speciesB speciesC
speciesB 0
speciesC 0 0
speciesD 0 0 0

print(ali$seq)

[1] "ACGT" "acgt" "ACGT" "ACGT"

• The CITATION file has been updated so that now citation("seqinr")

returns the full complete reference for the package seqinR.

• Non ASCII characters in documentation (*.Rd) files have been removed.
Declaration of the encoding as latin1 when necessary is now present. The
updated documentation files are: dinucl.Rd, gb2fasta.Rd, get.ncbi.Rd,

lseqinr.Rd, n2s.Rd, prochlo.Rd, s2c.Rd, SeqAcnucWeb.Rd, SeqFrag.Rd,

toyaa.Rd, words.pos.Rd, words.Rd, zscore.Rd.

• Function GC() and by propagation functions GC1(), GC2() and GC3() have
gained a new argument oldGC allowing to compute the G+C content as
in releases up to 1.0-6 included. The code has been also modified to avoid
divisions by zero with very small sequences.

• New function rot13() that returns the ROT-13 encoding of a string of
characters.

1.0 series

release 1.0-7

• A new experimental function extractseqs() to download sequences thru
zlib compressed sockets from an ACNUC server is released. Preliminary
tests suggest that working with about 100,000 CDS is possible with a home
ADSL connection. See the manual for some system.time() examples.

• As pointed by e-mail on 16 Nov 2006 by Emmanuel Prestat the URL used
in dia.bactgensize() was no more available, this has been fixed in the
current version.

• As pointed by e-mail on 16 Nov 2006 by Guy Perrière, the function
oriloc() was no more compatible with glimmer1 3.0 outputs. The func-
tion has gained a new argument glimmer.version defaulting to 3, but
the value 2 is still functional for backward compatibility with old glimmer
outputs.

1 Glimmer is a program to predict coding sequences in microbial genomes [83, 14].

163

• As pointed by e-mail on 24 Oct 2006 by Lionel Guy (http://pbil.
univ-lyon1.fr/seqinr/seqinrhtmlannuel/03/0089.html) there was no
default value for the as.string argument in the getSequence.SeqFastadna().
A default FALSE value is now present for backward compatibility with older
code.

• New utility vectorized function stresc() to escape LATEX special charac-
ters present in a string.

• New low level function readsmj() available.

• A new function readfirstrec() to get the record count of the specified
ACNUC index file is now available.

• Function getType() called without arguments will now use the default
ACNUC database to return available subsequence types.

• Function read.alignment() now also accepts file in addition to File

as argument.

• A new function rearranged.oriloc() is available. This method, based
on oriloc(), can be used to detect the effect of the replication mechanism
on DNA base composition asymmetry, in prokaryotic chromosomes.

• New function extract.breakpoints(), used to extract breakpoints in
rearranged nucleotide skews. This function uses the segmented package
to define the position of the breakpoints.

• New function draw.rearranged.oriloc() available, to plot nucleotide
skews on artificially rearranged prokaryotic chromosomes.

• New function gbk2g2.euk() available. Similarly to gbk2g2(), this func-
tion extracts the coding sequence annotations from a GenBank format file.
This function is specifically designed for eukaryotic sequences, i.e. with
introns. The output file will contain the coordinates of the exons, along
with the name of the CDS to which they belong.

• After an e-mail by Marcelo Bertalan on 26 Mar 2007, a bug in oriloc()

when the gbk argument was NULL was found and fixed by Anamaria
Necşulea.

• Functions translate() and getTrans() have gained a new argument
NAstring to represent untranslatable amino- acids, defaulting to character
”X”.

• There was a typo for the total number of printed bases in the ACNUC
books [22, 23] : 474,439 should be 526,506.

• Function invers() has been deleted.

• Functions translate(), getTrans() and comp() have gained a new ar-
gument ambiguous defaulting to FALSE allowing to handle ambiguous
bases. If TRUE, ambiguous bases are taken into account so that for in-
stance GGN is translated to Gly in the standard genetic code.

http://pbil.univ-lyon1.fr/seqinr/seqinrhtmlannuel/03/0089.html
http://pbil.univ-lyon1.fr/seqinr/seqinrhtmlannuel/03/0089.html

164 CHAPTER 11. RELEASE NOTES

• New function amb() to return the list of nucleotide matching a given IU-
PAC nucleotide symbol.

• Function count() has gained a new argument alphabet so that oligopep-
tides counts are now possible. Thanks to Gabriel Valiente for this sugges-
tion. The functions zscore(), rho() and summary.SeqFastadna() have
also an argument alphabet which is forwarded to count().

release 1.0-6

Release 1.0-6 is a minor release to fix a problem found and solved by Kurt
Hornik (namely a change from SET_ELEMENT to SET_STRING_ELT in C code for
s2c() in file util.c). The few changes are as follows.

• More typographical option for the output LATEX table of tablecode()

are now available to outline deviations from the standard genetic code
(see example in the appendix ”genetic codes” of the manual).

• A new dataset aaindex extracted from the aaindex database [43, 95, 65]
is now available. It contains a list of 544 physicochemical and biological
properties for the 20 amino-acids

• The default value for argument dia is now FALSE in function tablecode().

• The example code for data(chargaff) has been changed.

release 1.0-5

• A new function dotPlot() is now available.

• A new function crelistfromclientdata() is now available to create a
list on the server from a local file of sequence names, sequence accession
numbers, species names, or keywords names.

• A new function pmw() to compute the molecular weight of a protein is
now available.

• A new function reverse.align() contributed by Anamaria Necşulea is
now available to align CDS at the protein level and then reverse translate
this at the nucleic acid level from a clustalw output. This can be done
on the fly if clustalw is available on your platform.

• An undocumented behavior was reported by Guy Perrière for uco() when
computing RSCU on sequences where an amino-acid is missing. There is
now a new argument NA.rscu that allows the user to force the missing
values to his favorite magic value.

• There was a bug in read.fasta(): some sequence names were truncated,
this is now fixed (thanks to Marcus G. Daniels for pointing this). In
order to be more consistent with standard functions such as read.table()
or scan(), the file argument starts now with a lower case letter (file)
in function read.fasta(), but the old-style File is still functional for
forward-compatibility. There is a new logical argument in read.fasta()

165

named as.string to allow sequences to be returned as strings instead of
vector of single characters. The automatic conversion of DNA sequences
into lower case letters can now be disabled with the new logical argument
forceDNAtolower. It is also possible to disable the automatic attributes
settings with the new logical argument set.attributes.

• A new function write.fasta() is now available.

• The function kaks() now forces character in sequences to upper case. This
default behavior can be neutralized in order to save time by setting the
argument forceUpperCase to FALSE.

release 1.0-4

• The scaling factor n•• was missing in equation 7.3.

• The files louse.fasta, louse.names, gopher.fasta, gopher.names and
ortho.fasta that were used for examples in the previous version of this
document are no more downloaded from the internet since they are now
distributed in the sequences/ folder of the package.

• An example of synonymous and non synonymous codon usage analysis was
added to the vignette along with two toy data sets (toyaa and toycodon).

• A FAQ section was added to the vignette.

• A bug in getAnnot() when the number of lines was zero is now fixed.

• There is now a new argument, latexfile, in tablecode() to export
genetic codes tables in a LATEX document, for instance table 2.2 and table
2.3 here.

• There is now a new argument, freq, in count() to compute word frequen-
cies instead of counts.

• Function splitseq() has been entirely rewritten to improve speed.

• Functions computing the G+C content: GC(), GC1(), GC2(), GC3()

were rewritten to improve speed, and their document files were merged
to facilitate usage.

• The following new functions have been added:

– syncodons() returns all synonymous codons for a given codon. Ar-
gument numcode specifies the desired genetic code.

– ucoweight() returns codon usage bias on a sequence as the number
of synonymous codons present in the sequence for each amino acid.

– synsequence() generates a random coding sequence which is syn-
onymous to a given sequence and has a chosen codon usage bias.

– permutation() generates a new sequence from a given sequence,
while maintaining some constraints from the given sequence such as
nucleotide frequency, codon usage bias, ...

– rho() computes the rho statistic on dinucleotides as defined in [41].

166 CHAPTER 11. RELEASE NOTES

– zscore() computes the zscore statistic on dinucleotides as defined in
[69].

• Two datasets (dinucl and prochlo) were added to illustrate these new
functions.

release 1.0-3

• The new package maintainer is Dr. Simon Penel, PhD, who has now a fixed
position in the laboratory that issued seqinR (penel@biomserv.univ-lyon1.fr).
Delphine Charif was successful too to get a fixed position in the same lab,
with now a different research task (but who knows?). Thanks to the close
vicinity of our pioneering maintainers the transition was sweet. The DE-
SCRIPTION file of the seqinR package has been updated to take this
into account.

• The reference paper for the package is now in press. We do not have the
full reference for now, you may use citation("seqinr") to check if it is
complete now:

citation("seqinr")

To cite seqinR in publications use:

Charif, D. and Lobry, J.R. (2007)

Une entrée BibTeX pour les utilisateurs LaTeX est

@InCollection{,
author = {D. Charif and J.R. Lobry},
title = {Seqin{R} 1.0-2: a contributed package to the {R} project for statistical computing devoted to biological sequences retrieval and analysis.},
booktitle = {Structural approaches to sequence evolution: Molecules, networks, populations},
year = {2007},
editor = {U. Bastolla and M. Porto and H.E. Roman and M. Vendruscolo},
series = {Biological and Medical Physics, Biomedical Engineering},
pages = {207-232},
address = {New York},
publisher = {Springer Verlag},
note = {{ISBN :} 978-3-540-35305-8},

}

• There was a bug when sending a gfrag request to the server for long
(Mb range) sequences. The length argument was converted to scientific
notations that are not understand by the server. This is now corrected
and should work up the the Gb scale.

• The query() function has been improved by de-looping list element info
request, there are now download at once which is much more efficient. For
example, a query from a researcher-home ADSL connection with a list
with about 1000 elements was 60 seconds and is now only 4 seconds (i.e.
15 times faster now).

• A new parameter virtual has been added to query() so that long lists
can stay on the server without trying to download them automatically.
A query like query(s$socket,"allcds","t=cds", virtual = TRUE) is
now possible.

• Relevant genetic codes and frames are now automatically propagated.

167

• SeqinR sends now its name and version number to the server.

• Strict control on ambiguous DNA base alphabet has been relaxed.

• Default value for parameter invisible of function query() is now TRUE.

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

There were two compilation steps:

• compilation time was: Thu Jun 2 16:39:37 2016

• LATEX compilation time was: June 2, 2016

168 CHAPTER 11. RELEASE NOTES

CHAPTER 12

Genetic codes

Lobry, J.R.

12.1 Standard genetic code

The standard genetic code given in table 12.1 was produced with the follow-
ing code and inserted with \input{../tables/stdcode.tex} within this
LATEX document and referenced as \ref{stdcode} in the text.

tablecode(latexfile = "../tables/stdcode.tex",
label = "stdcode", size = "small")

12.2 Available genetic code numbers

The genetic code numbers are those from the NCBI1 (http://130.14.29.110/
Taxonomy/Utils/wprintgc.cgi?mode=c). This compilation from Andrzej (An-
jay) Elzanowski, Jim Ostell, Detlef Leipe, and Vladimir Soussov is based pri-
marily on two previous reviews [66, 39].

codes <- SEQINR.UTIL$CODES.NCBI
availablecodes <- which(codes$CODES != "deleted")
codes[availablecodes,"ORGANISMES", drop = FALSE]

ORGANISMES
1 standard
2 vertebrate.mitochondrial
3 yeast.mitochondrial
4 protozoan.mitochondrial+mycoplasma
5 invertebrate.mitochondrial
6 ciliate+dasycladacean
9 echinoderm+flatworm.mitochondrial
10 euplotid
11 bacterial+plantplastid
12 alternativeyeast
13 ascidian.mitochondrial
14 alternativeflatworm.mitochondrial
15 blepharism
16 chlorophycean.mitochondrial
21 trematode.mitochondrial

1 National Center for Biotechnology Information, Bethesda, Maryland, U.S.A.

169

http://130.14.29.110/Taxonomy/Utils/wprintgc.cgi?mode=c
http://130.14.29.110/Taxonomy/Utils/wprintgc.cgi?mode=c

170 CHAPTER 12. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.1: Genetic code number 1: standard.

22 scenedesmus.mitochondrial
23 hraustochytrium.mitochondria

The tables of variant genetic codes outlining the differences were produced
with the following code:

cdorder <- paste(paste(rep(s2c("tcag"), each =16), s2c("tcag"), sep = ""), rep(s2c("tcag"), each = 4), sep = "")
stdcode <- sapply(lapply(cdorder,s2c),translate, numcode = 1)
for(cd in availablecodes[-1]){
Tfile <- paste("../tables/codnum", cd, ".tex", sep = "")
preemph <- "\\textcolor{red}{\\textbf{"
postemph <- "}}"
stcodon <- (stdcode == sapply(lapply(cdorder,s2c),translate, numcode = cd))
pre <- ifelse(stcodon, "", preemph)
post <- ifelse(stcodon, "", postemph)
tablecode(numcode = cd, latexfile = Tfile, size = "small", preaa = pre, postaa = post)
cat(paste("\\input{", Tfile, "}", sep = ""), sep = "\n")

}

Session Informations
This part was compiled under the following environment:

• R version 3.2.4 (2016-03-10), x86_64-apple-darwin13.4.0

• Locale: fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, stats, utils

• Other packages: ade4 1.7-4, ape 3.5, grImport 0.9-0, MASS 7.3-45, seqinr 3.1-5,
tseries 0.10-35, XML 3.98-1.4, xtable 1.8-2

• Loaded via a namespace (and not attached): lattice 0.20-33, nlme 3.1-125, quadprog 1.5-5,
tools 3.2.4, zoo 1.7-12

12.2. AVAILABLE GENETIC CODE NUMBERS 171

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Stp
ATG Met ACG Thr AAG Lys AGG Stp

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.2: Genetic code number 2: vertebrate.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Thr CCT Pro CAT His CGT Arg
CTC Thr CCC Pro CAC His CGC Arg
CTA Thr CCA Pro CAA Gln CGA Arg
CTG Thr CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.3: Genetic code number 3: yeast.mitochondrial.

172 CHAPTER 12. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.4: Genetic code number 4: protozoan.mitochondrial+mycoplasma.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.5: Genetic code number 5: invertebrate.mitochondrial.

12.2. AVAILABLE GENETIC CODE NUMBERS 173

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Gln TGA Stp
TTG Leu TCG Ser TAG Gln TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.6: Genetic code number 6: ciliate+dasycladacean.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Asn AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.7: Genetic code number 9: echinoderm+flatworm.mitochondrial.

174 CHAPTER 12. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Cys
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.8: Genetic code number 10: euplotid.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.9: Genetic code number 11: bacterial+plantplastid.

12.2. AVAILABLE GENETIC CODE NUMBERS 175

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Ser CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.10: Genetic code number 12: alternativeyeast.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Lys AGA Gly
ATG Met ACG Thr AAG Lys AGG Gly

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.11: Genetic code number 13: ascidian.mitochondrial.

176 CHAPTER 12. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Tyr TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Asn AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.12: Genetic code number 14: alternativeflatworm.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Gln TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.13: Genetic code number 15: blepharism.

12.2. AVAILABLE GENETIC CODE NUMBERS 177

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Leu TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.14: Genetic code number 16: chlorophycean.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stp TGA Trp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Met ACA Thr AAA Asn AGA Ser
ATG Met ACG Thr AAG Lys AGG Ser

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.15: Genetic code number 21: trematode.mitochondrial.

178 CHAPTER 12. GENETIC CODES

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Stp TAA Stp TGA Stp
TTG Leu TCG Ser TAG Leu TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.16: Genetic code number 22: scenedesmus.mitochondrial.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Stp TCA Ser TAA Stp TGA Stp
TTG Leu TCG Ser TAG Stp TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 12.17: Genetic code number 23: hraustochytrium.mitochondria.

12.2. AVAILABLE GENETIC CODE NUMBERS 179

There were two compilation steps:

• compilation time was: Wed Jun 1 17:53:09 2016

• LATEX compilation time was: June 2, 2016

180 CHAPTER 12. GENETIC CODES

BIBLIOGRAPHY

[1] S.G. Andersson, A. Zomorodipour, J.O. Andersson, T. Sicheritz-Ponten,
U.C. Alsmark, R.M. Podowski, A.K. Naslund, A.S. Eriksson, H.H. Winkler,
and C.G. Kurland. The genome sequence of Rickettsia prowazekii and the
origin of mitochondria. Nature, 396:133–140, 1998. 64

[2] A.L. Bak, J.F. Atkins, C.E. Singer, and B.N. Ames. Evolution of dna base
compositions in microorganisms. Science, 175:1391–1393, 1972. 113, 118

[3] W. Bar, B. Brinkmann, P. Lincoln, W.R. Mayr, and U. Rossi. DNA
recommendations. 1994 report concerning further recommendations of the
DNA commission of the ISFH regarding PCR-based polymorphisms in STR
(short tandem repeat) systems. Int. J. Leg. Med., 107:159–160, 1994. 155

[4] A. Bernal, U. Ear, and N. Kyrpides. Genomes online database (GOLD):
a monitor of genome projects world-wide. Nucleic Acids Research, 29:126–
127, 2001. 159

[5] F.R. Blattner, V. Burland, G. Plunkett, H.J. Sofia, and D.L. Daniels. Anal-
ysis of the Escherichia coli genome. IV. DNA sequence of the region from
89.2 to 92.8 minutes. Nucleic Acids Research, 21:5408–5417, 1993. 132

[6] F.R. Blattner, G. Plunkett III, C.A. Bloch, N.T. Perna, V. Burland, M. Ril-
ley, J. Collado-Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor,
N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J. Rose, B. Mau, and
Y. Shao. The complete genome sequence of Escherichia coli K-12. Sci-
ence, 277:1453–1462, 1997. 132

[7] J. Buckheit and D. L. Donoho. Wavelets and Statistics, chapter Wavelab
and reproducible research. Springer-Verlag, Berlin, New York, 1995. A.
Antoniadis editor. 17

[8] V. Burland, G. Plunkett, D.L. Daniels, and F.R. Blattner. DNA sequence
and analysis of 136 kilobases of the Escherichia coli genome: organizational
symmetry around the origin of replication. Genomics, 16:551–561, 1993.
132

181

182 BIBLIOGRAPHY

[9] D. Charif and J.R. Lobry. SeqinR 1.0-2: a contributed package to the R
project for statistical computing devoted to biological sequences retrieval
and analysis. In H.E. Roman U. Bastolla, M. Porto and M. Vendruscolo,
editors, Structural approaches to sequence evolution: Molecules, networks,
populations, Biological and Medical Physics, Biomedical Engineering, pages
207–232. Springer Verlag, New York, USA, 2007. ISBN 978-3-540-35305-8.
15

[10] D. Charif, J. Thioulouse, J.R. Lobry, and G. Perrière. Online synonymous
codon usage analyses with the ade4 and seqinR packages. Bioinformatics,
21(4):545–7, 2005. 17

[11] J.-L. Chassé. Modélisation statistique : statistique non paramétrique (fiches

de cours). Laboratoire de Biométrie et Biologie Évolutive, Lyon, France,
1988. 1988 for the publication year is an upper limit: could be earlier. 105

[12] D.B Dahl and et al. xtable: Export tables to LaTeX or HTML, 2005. R
package version 1.3-0. 21

[13] D.L. Daniels, G. Plunkett, V. Burland, and F.R. Blattner. Analysis of the
Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5
minutes. Science, 257:771–778, 1992. 132

[14] A.L. Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Improved
microbial gene identification with GLIMMER. Nucleic Acids Research,
27:4636–4641, 1999. 162

[15] A. Dufresne, M. Salanoubat, F. Partensky, F. Artiguenave, I.M. Axmann,
V. Barbe, S. Duprat, M.Y. Galperin, E.V. Koonin, F. Le Gall, K.S.
Makarova, M. Ostrowski, S. Oztas, C. Robert, I.B. Rogozin, D.J. Scan-
lan, N. Tandeau de Marsac, J. Weissenbach, P. Wincker, Y.I. Wolf, and
W.R. Hess. Genome sequence of the cyanobacterium Prochlorococcus mar-
inus ss120, a nearly minimal oxyphototrophic genome. Proceedings of the
National Academy of Sciences of the United States of America, 100:10020–
10025, 2003. 126

[16] Duncan Temple Lang (duncan@wald.ucdavis.edu). XML: Tools for parsing
and generating XML within R and S-Plus, 2006. R package version 0.99-8.
3

[17] J. Felsenstein. PHYLIP-phylogeny inference package (version 3.2). Cladis-
tics, 5:164–166, 1989. 42

[18] A.C. Frank and J.R. Lobry. Oriloc: prediction of replication boundaries in
unannotated bacterial chromosomes. Bioinformatics, 16(6):560–561, 2000.
28

[19] N. Galtier, M. Gouy, and C. Gautier. SeaView and Phylo win, two graphic
tools for sequence alignment and molecular phylogeny. Comput. Applic.
Biosci., 12:543–548, 1996. 40, 41

[20] A. Garay-Arroyo, J.M. Colmenero-Flores, A. Garciarrubio, and A.A. Co-
varrubias. Highly hydrophilic proteins in prokaryotes and eukaryotes are
common during conditions of water deficit. J. Biol. Chem., 275:5668–5674,
2000. 31

BIBLIOGRAPHY 183

[21] C. Gautier. Analyses statistiques et évolution des séquences d’acides nu-
cléiques. PhD thesis, Université Claude Bernard - Lyon I, 1987. 83

[22] C. Gautier, M. Gouy, M. Jacobzone, and R. Grantham. Nucleic acid se-
quences handbook. Vol. 1. Praeger Publishers, London, UK, 1982. ISBN
0-275-90798-8. 13, 14, 49, 163

[23] C. Gautier, M. Gouy, M. Jacobzone, and R. Grantham. Nucleic acid se-
quences handbook. Vol. 2. Praeger Publishers, London, UK, 1982. ISBN
0-275-90799-6. 13, 14, 49, 163

[24] C. Gautier, M. Gouy, and S. Louail. Non-parametric statistics for nucleic
acid sequence study. Biochimie, 67:449–453, 1985. 116, 158

[25] S.J. Gould. Wonderful life. Norton, New York, USA, 1989. 2

[26] S.J. Gould. Ladders and cones: Constraining evolution by canonical icons.
In R.B. Silvers, editor, Hidden Histories of Science, pages 37–67, New York,
USA, 1995. New York Review of Books. 2

[27] M. Gouy and S. Delmotte. Remote access to ACNUC nucleotide and pro-
tein sequence databases at PBIL. Biochimie, 90:555–562, 2008. 61

[28] M. Gouy, C. Gautier, M. Attimonelli, C. Lanave, and G. di Paola. ACNUC-
a portable retrieval system for nucleic acid sequence databases: logical and
physical designs and usage. Computer Applications in the Biosciences,
1:167–172, 1985. 49, 61

[29] M. Gouy, C. Gautier, and F. Milleret. System analysis and nucleic acid
sequence banks. Biochimie, 67:433–436, 1985. 49, 61

[30] M. Gouy, F. Milleret, C. Mugnier, M. Jacobzone, and C. Gautier. ACNUC:
a nucleic acid sequence data base and analysis system. Nucleic Acids Res.,
12:121–127, 1984. 3, 49, 61, 105

[31] R. Grantham. Amino acid difference formula to help explain protein evo-
lution. Science, 185:862–864, 1974. 3

[32] M.A. Hannah, A.G. Heyer, and D.K. Hincha. A global survey of gene
regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet.,
1:e26, 2005. 31, 36, 38, 40

[33] K. Hayashi, N. Morooka, Y. Yamamoto, K. Fujita, K. Isono, S. Choi,
E. Ohtsubo, T. Baba, B.L. Wanner, H. Mori, and T. Horiuchi. Highly
accurate genome sequences of Escherichia coli K-12 strains MG1655 and
W3110. Molecular Systems Biology, 2:2006.0007, 2006. 132

[34] D. G. Higgins and P. M. Sharp. CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene, 73:237–244, 1988.
41

[35] K. Hornik. The R FAQ: Frequently Asked Questions on R (version
2.3.2006-07-13), 2006. ISBN 3-900051-08-9 http://CRAN.R-project.org/

doc/FAQ/. 16

http://CRAN.R-project.org/doc/FAQ/
http://CRAN.R-project.org/doc/FAQ/

184 BIBLIOGRAPHY

[36] L.D. Hurst. The Ka/Ks ratio: diagnosing the form of sequence evolution.
Trends Genet., 18:486–487, 2002. 92

[37] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
J. Comp. Graph. Stat., 3:299–314, 1996. 14, 15

[38] M. Jacobzone and C. Gautier. ANALSEQ Manuel d’utilisation. UMR
CNRS 5558, Biométrie, Génétique et Biologie des Populations, 1989. 3,
105

[39] T. H. Jukes and S. Osawa. Evolutionary changes in the genetic code. Comp.
Biochem. Physiol. B., 106:489–494, 1993. 169

[40] T.H. Jukes and C.R. Cantor. Evolution of protein molecules. In H.N.
Munro, editor, Mammalian Protein Metabolism, pages 21–132, New York,
1969. Academic Press. 46, 47

[41] S. Karlin and V. Brendel. Chance and statistical significance in protein
and DNA sequence analysis. Science, 257:39–49, 1992. 113, 165

[42] S. Karlin and L.R. Cardon. Computational DNA sequence analysis. Annual
Review of Microbiology, 48:619–654, 1994. 152

[43] S. Kawashima and M. Kanehisa. AAindex: amino acid index database.
Nucleic Acids Res., 28:374–374, 2000. 3, 164

[44] J. Keogh. Circular transportation facilitation device, 2001. 16

[45] M. Kimura. A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J. Mol.
Evol., 16:111–120, 1980. 47

[46] J. Kiraga. Analysis and computer simulations of variability of isoelectric
point of proteins in the proteomes. PhD thesis, University of Wroc law,
2008. 156

[47] J. Krawczyk, A. Goesmann, R. Nolte, M. Werber, and B. Weisshaar.
Trace2PS and FSA2PS: two software toolkits for converting trace and fsa
files to PostScript format. Source Code for Biology and Medicine, 4:4, 2009.
154

[48] N.C. Kyrpides. Genomes online database (GOLD 1.0): a monitor of com-
plete and ongoing genome projects world-wide. Bioinformatics, 15:773–774,
1999. 159

[49] J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic
character of a protein. Journal of Molecular Biology, 157:105–132, 1982.
35, 89

[50] P. Legendre, Y. Desdevises, and E. Bazin. A statistical test for host-parasite
coevolution. Syst. Biol., 51:217–234, 2002. 45

[51] F. Leisch. Sweave: Dynamic generation of statistical reports using literate
data analysis. Proceedings in Computational Statistics, Compstat 2002:575–
580, 2002. 15, 21

BIBLIOGRAPHY 185

[52] W.-H. Li. Unbiased estimation of the rates of synonymous and nonsynony-
mous substitution. J. Mol. Evol., 36:96–99, 1993. 92

[53] K. Liolios, K. Mavrommatis, N. Tavernarakis, and N.C. Kyrpides. The
genomes on line database (GOLD) in 2007: status of genomic and metage-
nomic projects and their associated metadata. Nucleic Acids Research, in
press:D000–D000, 2008. 159

[54] K. Liolios, N. Tavernarakis, P. Hugenholtz, and N.C. Kyrpides. The
genomes on line database (GOLD) v.2: a monitor of genome projects world-
wide. Nucleic Acids Research, 34:D332–D334, 2006. 159

[55] R.A. Litjens, T.I. Quickenden, and C.G. Freeman. Visible and near-
ultraviolet absorption spectrum of liquid water. Applied Optics, 38:1216–
1223, 1999. 126, 159

[56] J.R. Lobry. Asymmetric substitution patterns in the two DNA strands of
bacteria. Molecular Biology and Evolution, 13:660–665, 1996. 131, 132, 159

[57] J.R. Lobry. Life history traits and genome structure: aerobiosis and G+C
content in bacteria. Lecture Notes in Computer Sciences, 3039:679–686,
2004. 19, 21

[58] J.R. Lobry and D. Chessel. Internal correspondence analysis of codon and
amino-acid usage in thermophilic bacteria. Journal of Applied Genetics,
44:235–261, 2003. 93, 153

[59] J.R. Lobry and C. Gautier. Hydrophobicity, expressivity and aromatic-
ity are the major trends of amino-acid usage in 999 Escherichia coli
chromosome-encoded genes. Nucleic Acids Res, 22:3174–80, 1994. 87, 97,
98, 99

[60] J.R. Lobry and N. Sueoka. Asymmetric directional mutation pressures in
bacteria. Genome Biology, 3(10):research0058.1–research0058.14, 2002. 16

[61] A.O. Lovejoy. The Great Chain of Being: A Study of the History of an
Idea. Harvard University Press, Cambridge, Massachusetts, USA, 1936. 2

[62] P. Mackiewicz, J. Zakrzewska-Czerwińska, A. Zawilak, M.R. Dudek, and
S. Cebrat. Where does bacterial replication start? rules for predicting the
oriC region. Nucleic Acids Research, 32:3781–3791, 2004. 29

[63] P. Murrell. R Graphics. Computer Science & Data Analysis. Chapman
& Hall/CRC, New York, 2005. ISBN: 9781584884866 http://www.stat.

auckland.ac.nz/~paul/RGraphics/rgraphics.html. 132

[64] Paul Murrell and Richard Walton. grImport: Importing Vector Graphics,
2006. R package version 0.2. 3

[65] K. Nakai, A. Kidera, and M. Kanehisa. Cluster analysis of amino acid
indices for prediction of protein structure and function. Protein Eng., 2:93–
100, 1988. 3, 164

[66] S. Osawa, T. H. Jukes, K. Watanabe, and A. Muto. Recent evidence for
evolution of the genetic code. Microbiol. Rev., 56:229–264, 1992. 169

http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

186 BIBLIOGRAPHY

[67] H. Pages, R. Gentleman, and S. DebRoy. Biostrings: String objects rep-
resenting biological sequences, and matching algorithms, 2007. R package
version 2.6.4. 159

[68] L. Palmeira. Analyse et modélisation des dépendances entre sites voisins
dans l’évolution des séquences d’ADN. PhD thesis, Université Claude
Bernard - Lyon I, 2007. 126, 159

[69] L. Palmeira, L. Guéguen, and J.R. Lobry. UV-targeted dinucleotides are
not depleted in light-exposed prokaryotic genomes. Molecular Biology and
Evolution, 23:2214–2219, 2006. 113, 115, 118, 124, 166

[70] E. Paradis, J. Claude, and K. Strimmer. Ape: analyses of phylogenetics
and evolution in R language. Bioinformatics, 20:289–290, 2004. 46

[71] J. Pačes, R. Źıka, V. Pačes, A. Pavĺıček, O. Clay, and G. Bernardi. Rep-
resenting GC variation along eukaryotic chromosomes. Gene, 333:135–141,
2004. 106

[72] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences of the United
States of America, 85:2444–2448, 1988. 23

[73] J.F. Peden. Analysis of codon usage. PhD thesis, University of Nottingham,
1999. 135, 157

[74] G. Perrière and J. Thioulouse. Use and misuse of correspondence analysis
in codon usage studies. Nucleic Acids Res., 30:4548–4555, 2002. 83, 93

[75] G. Plunkett, V. Burland, D.L. Daniels, and F.R. Blattner. Analysis of the
Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2
minutes. Nucleic Acids Research, 21:3391–3398, 1993. 132

[76] T.I. Quickenden and J.A. Irvin. The ultraviolet absorption spectrum of
liquid water. The Journal of Chemical Physics, 72:4416–4428, 1980. 126,
159

[77] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2016. 14, 15

[78] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2006. ISBN 3-900051-07-0. 3

[79] Trina E. Roberts. ComPairWise: Compare phylogenetic or population ge-
netic data alignments, 2007. R package version 1.01. 157

[80] G. Rocap, F.W. Larimer, J. Lamerdin, S. Malfatti, P. Chain, N.A. Ahlgren,
A. Arellano, M. Coleman, L. Hauser, W.R. Hess, Z.I. Johnson, M. Land,
D. Lindell, A.F. Post, W. Regala, M. Shah, S.L. Shaw, C. Steglich,
M.B. Sullivan, C.S. Ting, A. Tolonen, E.A. Webb, E.R. Zinser, and S.W.
Chisholm. Genome divergence in two Prochlorococcus ecotypes reflects
oceanic niche differentiation. Nature, 424:1042–1047, 2003. 126

BIBLIOGRAPHY 187

[81] R. Rudner, J.D. Karkas, and E. Chargaff. Separation of microbial deoxyri-
bonucleic acids into complementary strands. Proceedings of the National
Academy of Sciences of the United States of America, 63:152–159, 1969. 17

[82] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406–
425, 1984. 46

[83] S.L. Salzberg, A.L. Delcher, S. Kasif, and O. White. Microbial gene identi-
fication using interpolated Markov models. Nucleic Acids Research, 26:544–
548, 1998. 162

[84] Sophie Schbath. Étude asymptotique du nombre d’occurrences d’un mot
dans une châıne de Markov et application à la recherche de mots de
fréquence exceptionnelle dans les séquences d’ADN. PhD thesis, Univer-
sité René Descartes, Paris V, 1995. 116

[85] R. B. Setlow. Cyclobutane-type pyrimidine dimers in polynucleotides. Sci-
ence, 153:379–386, 1966. 118

[86] P.M. Sharp and E. Cowe. Synonymous codon usage in Saccharomyces cere-
visiae. Yeast, 7:657–678, 1991. 157

[87] P.M. Sharp and W.-H. Li. The codon adaptation index - a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Research, 15:1281–1295, 1987. 98, 157

[88] D.C. Shields and P.M. Sharp. Synonymous codon usage in Bacillus subtilis
reflects both translational selection and mutational biases. Nucleic Acids
Research, 15:8023–8040, 1987. 157

[89] C.E. Singer and B.N. Ames. Sunlight ultraviolet and bacterial DNA base
ratios. Science, 170:822–826, 1970. 113, 118, 124

[90] H.J. Sofia, V. Burland, D.L. Daniels, G. Plunkett, and F.R. Blattner. Anal-
ysis of the Escherichia coli genome. V. DNA sequence of the region from
76.0 to 81.5 minutes. Nucleic Acids Research, 22:2576–2586, 1994. 132

[91] R. Staden. Graphic methods to determine the function of nucleic acid
sequences. Nucleic Acids Res., 12:521–538, 1984. 3

[92] N. Sueoka. Directional mutation pressure and neutral molecular evolution.
Proceedings of the National Academy of Sciences of the United States of
America, 85:2653 –2657, 1988. 139

[93] N. Sueoka. Two aspects of DNA base composition: G+C content and
translation-coupled deviation from intra-strand rule of A = T and G = C.
J. Mol. Evol., 49:49–62, 1999. 140

[94] H. Suzuki, C.J. Brown, L.J. Forney, and E. Top. Comparison of correspon-
dence analysis methods for synonymous codon usage in bacteria. DNA
Research, 15:357–365, 2008. 153

188 BIBLIOGRAPHY

[95] K. Tomii and M. Kanehisa. Analysis of amino acid indices and mutation
matrices for sequence comparison and structure prediction of proteins. Pro-
tein Eng., 9:27–36, 1996. 3, 164

[96] Adrian Trapletti and Kurt Hornik. tseries: Time Series Analysis and Com-
putational Finance, 2007. R package version 0.10-11. 112

[97] I.M. Wallace, G. Blackshields, and D.G. Higgins. Multiple sequence align-
ments. Curr. Opin. Struct. Biol., 15:261–266, 2005. 41

[98] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1:80–83, 1945. 108

[99] T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono,
K. Mizobuchi, and A. Nakata. Systematic sequencing of the Escherichia
coli genome: analysis of the 0-2.4 min region. Nucleic Acids Research,
20:3305–3308, 1992. 132

	I Frontmatter
	Licence of this document

	II Mainmatter
	Introduction
	About ACNUC
	About R and CRAN
	About this document
	About sequin and seqinR
	About getting started
	About running R in batch mode
	About the learning curve
	Wheel (the)
	Hotline
	Automation
	Reproducibility
	Fine tuning
	Data as fast moving targets
	Sweave() and xtable()

	Importing sequences from flat files
	Importing raw sequence data from FASTA files
	FASTA files examples
	The function read.fasta()
	The function write.fasta()
	Big room examples

	Importing aligned sequence data
	Aligned sequences files examples
	The function read.alignment()
	A simple example with the louse-gopher data

	Importing sequences from ACNUC databases
	Choose a bank
	Make your query
	Extract sequences of interest
	Introduction
	Extracting sequences with trans-splicing
	Extracting sequences from many entries

	The query language
	Where to find information
	Case sensitivity and ambiguities resolution
	Selection criteria
	Introduction
	SP=taxon
	TID=id
	K=keyword
	T=type
	J=journal_name
	R=refcode
	AU=name
	AC=accession_no
	N=seq_name
	NS=taxon_name
	NK=keyword_name
	Y=year or Y>year or Y<year
	O=organelle
	M=molecule
	ST=status
	F=file_name
	FA=file_name
	FK=file_name
	FS=file_name
	list_name

	Operators
	AND
	OR
	NOT
	PAR
	SUB
	PS
	PK
	UN
	SD
	KD

	How to deal with sequences
	Sequence classes
	Generic methods for sequences
	From classes to methods
	From methods to classes

	Internal representation of sequences
	Sequences as vectors of characters

	Multivariate analyses
	Correspondence analysis
	Synonymous and non-synonymous analyses

	Nonparametric statistics
	Introduction
	Elementary nonparametric statistics
	Introduction
	Rank sum
	Rank variance
	Clustering around the observed centre
	Number of runs
	Multiple clusters

	Dinucleotides over- and under-representation
	Introduction
	The rho statistic
	The z-score statistic
	Comparing statistics on a sequence

	UV exposure and dinucleotide content
	The expected impact of UV light on genomic content
	The measured impact of UV light on genomic content

	III Appendix
	FAQ: Frequently Asked Questions
	How can I compute a score over a moving window?
	How can I extract just a fragment from my sequence?
	How do I compute a score on my sequences?
	Why do I have not exactly the same G+C content as in codonW?
	How do I get a sequence from its name?

	GNU Free Documentation License
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	 COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE

	Release notes
	Genetic codes
	Standard genetic code
	Available genetic code numbers

	Bibliography

