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1 How can I extract the mitochondrial D-loop/Control
Region?

This question from Sam Borstein was raised by e-mail on 2016-07-10 with an
example based on the following genBank entry:

LOCUS JF979198 16569 bp DNA circular PRI 10-MAY-2012
DEFINITION Homo sapiens isolate 02_C4c1a(S635848) mitochondrion, complete

genome.
ACCESSION JF979198
[...]
FEATURES Location/Qualifiers

source 1..16569
/organism="Homo sapiens"
/organelle="mitochondrion"
/mol_type="genomic DNA"
/isolate="02_C4c1a(S635848)"
/db_xref="taxon:9606"
/haplotype="C4c1a"
/country="USA: Oklahoma, Flint District"
/note="Cherokee"

D-loop complement(join(16104..16569,1..191))
tRNA 577..647

/product="tRNA-Phe"
rRNA 648..1601

/product="12S ribosomal RNA"
[...]

The D-loop control region is listed under the FEATURES but is not turned out
automatically into subsequences:

choosebank("genbank")
getType()

sname libel
5962 CDS .PE protein coding region
5963 LOCUS sequenced DNA fragment
5964 MISC_RNA .RN other structural RNA coding region
5965 NCRNA .NC non-protein-coding gene other than rRNA and tRNA
5966 RRNA .RR mature ribosomal RNA
5967 TMRNA .TM transfer messenger RNA
5968 TRNA .TR mature transfer RNA

The more general question is then: can I extract the sequence of something
which is documented in the FEATURES but not directly available as a subse-
quence? The answer is yes: the function extractseqs() can do the job, dealing
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with all the tedious join or complement operations. As from seqinR 3.2-1 the
function has been changed not to use zlib compressed sockets by default so that
it works on all platforms:

mito <- query("mito","AC=JF979198")
myseq <- extractseqs("mito", operation = "feature", feature = "D-loop")
myseq

[1] ">JF979198.F1 657 residues"
[2] "TGTTCGCCTGTAATATTGAACGTAGGTGCGATAAATAATAGGATGAGGCAGGAATCAAAG"
[3] "ACAGATACTGCGACATAGGGTGCTCCGGCTCCAGCGTCTCGCAATGCTATCGCGTGCACA"
[4] "CCCCCCAGACGAAAATACCAAATGCATGGAGAGCTCCCGTGAGTGGTTAATAGGGTGATA"
[5] "GACCTGTGATCCATCGTGATGTCTTATTTAAGGGGAACGTGTGGGCTATTTAGGCTTTAT"
[6] "GGCCCTGAAGTAGGAACCAGATGTCGGATACAGTTCACTTTAGCTACCCCCAAGTGTTAT"
[7] "GGGCCCGGAGCGAGGAGAGTAGCACTCTTGTGCGGGATATTGATTTCACGGAGGATGGTG"
[8] "GTCAAGGGACCCCTATCTGAGGGGGGTCATCCATGGGGACGAGAAGGGATTTGACTGTAA"
[9] "TGTGCTATGTACGATAAATGGCTTTATGTACTATGTACTGTTGAGGGTGGGTAGGTTTGT"
[10] "TGGTATCCTAGTGGGTGAGGGGTGGCTTTGGAGTTGCAGCTGATGTGTGATAGTTGAAGG"
[11] "TTGATTGCTGTACTTGCTTGTAAGCATGGGGAGGGGGTTTTGATGTGGATTGGGTTTTTA"
[12] "TGTACTACAGGTGGTCAAGTATTTATGGTACCGTACAATATTCATGGTGGCTGGCAG"

You can then read this just as a FASTA file with:

myfasta <- read.fasta(textConnection(myseq))
summary(myfasta)

Length Class Mode
JF979198.F1 657 SeqFastadna character
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Figure 1: Screenshot of a part of figure 1 from [6]. The GC-skew is computed in
non-overlapping windows of 10 Kb along a 1.6 Mb fragment of the Escherichia
coli chromosome. The sequence is available with data(m16j).

2 How can I compute a score over a moving win-
dow?

As an illustration, suppose that we want to reproduce a part of figure 1 from
[6] whose screenshot is given is given in figure 1.

The score here is the GC-skew computed in non-overlapping windows of
10 Kb for a 1.6 Mb sequence. We need a fragment of Escherchia coli K12
chromosome from 67.4 min to 4.1 min on the genetic map. The sequence is
directly available with data(m16j). Let’s put this fragment into the string
myseq:

data(m16j)
myseq <- m16j

This is not exactly the same sequence that was used in [6] but very close
to1. We define a function called gcskew() that computes our score for a given
string x:

gcskew <- function(x){
if( !is.character(x) || length(x) > 1 ) stop("single string expected")
tmp <- tolower(s2c(x))
nC <- sum(tmp == "c")
nG <- sum(tmp == "g")
if( nC + nG == 0 ) return(NA)
return(100*(nC - nG)/(nC + nG))

}
gcskew("GCCC")

[1] 50

gcskew("GCCCNNNNNN")

[1] 50

1The sequence used in [6] was a 1,616,174 bp fragment obtained from the concatenation
of nine overlapping sequences (U18997, U00039, L10328, M87049, L19201, U00006, U14003,
D10483, D26562 [10, 3, 4, 9, 1, 13]). Ambiguities have been resolved since then and its was a
chimeric sequence from K-12 strains MG1655 and W3110 [5], the sequence used here is from
strain MG1655 only [2].
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Note some defensive programming tricks used here:

• We check that the argument x is a single string.

• We expand it as vector of single chars with s2c() only within the function
to avoid big objects in the workspace.

• We force to lower case letters with tolower() so that we can use upper
case letters too.

• We avoid division by zero and return NA in this case.

• We do not divide by the length of x but by the actual number of C and
G so that ambiguous bases such as N do not introduce biases.

We move now along the sequence to compute the GC-skew:

step <- 10000
wsize <- 10000
starts <- seq(from = 1, to = nchar(myseq), by = step)
starts <- starts[-length(starts)] # remove last one
n <- length(starts)
result <- numeric(n)
for(i in seq_len(n)){

result[i] <- gcskew(substr(myseq, starts[i], starts[i] + wsize - 1))
}

The following code2 was used to produce figure 2.

xx <- starts/1000
yy <- result
n <- length(result)
hline <- 0
plot (yy ~ xx, type="n", axes=FALSE, ann=FALSE, ylim = c(-10, 10))
polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)), col = "black", border=NA)
usr <- par("usr")
rect(usr[1], usr[3], usr[2], hline, col="white", border=NA)
lines(xx, yy)
abline (h=hline)
box()
axis(1, at = seq(0,1600, by = 200))
axis(2, las = 1)
title(xlab = "position (Kbp)", ylab = "(C-G)/(C+G) %",
main = expression(paste("GC skew in ", italic(Escherichia~~coli))))
arrows(860, 5.5, 720, 0.5, length = 0.1, lwd = 2)
text(860, 5.5, "origin of replication", pos = 4)

You can now play with the wsize and step parameters to explore the signal
(but note that with overlapping windows your points are no more indepen-
dent) or use all the smoothing tools available under . Figure 3 shows for
instance what can be obtained with the lowess() function with two values for
the smoothing parameter f. The corresponding code is as follows:

2This code is adapted from the code at http://www.stat.auckland.ac.nz/~paul/

RGraphics/chapter3.html for figure 3.25 in Paul Murrell’s book [7]. This book is a must
read if you are interested by ’s force de frappe in the graphic domain.
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Figure 2: Re-creation of figure 1 from scratch.

plot(xx,yy, col = "grey", type = "b", ylim = c(-10,10), las = 1, xaxt = "n",
main = expression(paste("GC skew in ", italic(Escherichia~~coli))),
xlab = "position (Kbp)", ylab = "(C-G)/(C+G) %")
axis(1, at = seq(0,1600, by = 200))
lines(smooth <- lowess(xx,yy, f = 0.05), lwd = 1)
polycurve <- function(x, y, base.y = min(y), ...) polygon(x = c(min(x), x, max(x)), y = c(base.y, y, base.y), ...)
up <- smooth$y > 0
polycurve(smooth$x[up], smooth$y[up], base.y = 0, col = rgb(0,0,1,0.5))
lines(lowess(xx,yy, f = 0.2), lwd = 2, col = "red")
legend("topright", inset = 0.01, legend = c("f = 0.05", "f = 0.20"), lwd = c(1,2), col = c("black", "red"))
abline(h=0)
arrows(860, 5.5, 720, 0.5, length = 0.1, lwd = 2)
text(860, 5.5, "origin of replication", pos = 4)

3 How can I extract just a fragment from my
sequence?

Use the generic function getFrag() :

choosebank("emblTP")
mylist <- query("mylist", "AC=A00001")
getFrag(mylist$req[[1]], begin = 10, end = 20)

[1] "gatggagaatt"
attr(,"seqMother")
[1] "A00001"
attr(,"begin")
[1] 10
attr(,"end")
[1] 20
attr(,"class")
[1] "SeqFrag"

closebank()
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Figure 3: Playing with the smoothing parameter f of the lowess() function.

4 How do I compute a score on my sequences?

In the example below we want to compute the G+C content in third codon
positions for complete ribosomal CDS from Escherichia coli :

choosebank("emblTP")
ecribo <- query("ecribo","sp=escherichia coli ET t=cds ET k=ribosom@ ET NO k=partial")
myseqs <- sapply(ecribo$req, getSequence)
(gc3 <- sapply(myseqs, GC3))

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

At the amino-acid level, we may get an estimate of the isoelectric point of
the proteins this way:

sapply( sapply(myseqs, getTrans), computePI)

[1] 6.624309 7.801329 10.864793 5.931989 7.830476 6.624309 7.801329
[8] 9.203410 9.826485 5.674672 7.154423 6.060457 6.313741 5.571446
[15] 9.435422 4.310745 6.145496 4.876054 11.006424 10.876041 6.624309
[22] 7.801329 10.864793 9.346289 9.203410 5.877050 5.931989 9.934988
[29] 5.920490 6.612505 6.624309 6.624309 7.801329 10.864793 5.931989
[36] 11.182499 9.598944 6.624309 10.864793 9.203410 11.031938 5.858421
[43] 5.858421 11.777516 11.777511 10.619175 11.365738 9.460987 10.864793
[50] 13.002381 9.845859 10.584868 11.421257 10.248325 11.031938 10.402075
[57] 4.863862 6.612505 9.681066 11.150304 11.182505 11.043607 6.624309
[64] 6.612505 6.624309 4.310745

Note that some pre-defined vectors to compute linear forms on sequences are
available in the EXP data.

6



As a matter of convenience, you may encapsulate the computation of your
favorite score within a function this way:

GC3m <- function(list, ind = 1:list$nelem) sapply(sapply(list$req[ind], getSequence), GC3)
GC3m(ecribo)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324 0.5000000 0.5113636 0.5290520 0.6142857
[15] 0.4904762 0.5714286 0.6191860 0.5906040 0.4880000 0.4880000 0.4946237
[22] 0.6046512 0.5000000 0.3522727 0.5076923 0.4343434 0.6194030 0.5522388
[29] 0.6104651 0.5661157 0.4946237 0.4946237 0.6079734 0.5000000 0.6343284
[36] 0.4659091 0.5789474 0.4946237 0.5000000 0.4974359 0.5689655 0.4611111
[43] 0.4611111 0.5303030 0.5303030 0.4482759 0.4201681 0.5915493 0.5000000
[50] 0.3829787 0.4519231 0.4302326 0.5696203 0.4285714 0.5689655 0.5000000
[57] 0.5224417 0.5661157 0.6057692 0.4444444 0.4659091 0.4130435 0.4946237
[64] 0.5661157 0.4946237 0.5680272

GC3m(ecribo, 1:10)

[1] 0.4946237 0.6046512 0.5000000 0.6194030 0.5772727 0.4838710 0.5980066
[8] 0.4974359 0.5031250 0.4324324

5 Why do I have not exactly the same G+C
content as in codonW?

This question was raised (and solved) by Oliver Clay in an e-mail (23-AUG-
2006). The program codonW was written in C as part of John Peden’s PhD thesis
on Codon Usage [8] and is available at http://codonw.sourceforge.net/. The
reason for the small differences in G+C content between the two programs is that
the default behavior in codonW is to remove the stop codon before computations.
Here is one way of removing the stop codon under :

gc3nos <- sapply(myseqs, function(s) GC3(s[1:(length(s) - 3)]))

As compared with the previous result, the difference is small but visible:

plot(x = gc3, y = gc3nos, las =1, main="Stop codon removal effect on G+C content
in third codon positions", xlab = "With stop codon", ylab ="Stop codons removed")
abline(c(0,1))
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CodonW was released with a test file called input.dat, here are the first 10
lines of the file copied from CodonWSourceCode_1_4_4:

inputdatfile <- system.file("sequences/input.dat", package = "seqinr")
cat(readLines(inputdatfile,n=10), sep = "\n")

>YCG9 Probable 1377 residues Pha 0 Code 0
ATGAATATGCTCATTGTCGGTAGAGTTGTTGCTAGTGTTGGGGGAAGCGGACTTCAAACG
CTTTGCTTTGTTATTGGTTGTACGATGGTTGGTGAAAGGTCACGTCCATTGGTGATTTCC
ATCCTAAGTTGTGCATTTGCTGTAGCTGCTATCGTTGGTCCTATAATCGGAGGTGCCTTT
ACAACCCATGTTACCTGGAGGTGGTGCTTCTATATCAATCTTCCTATCGGTGGTCTTGCC
ATTATTATGTTTTTACTCACATATAAGGCCGAGAATAAGGGTATACTTCAACAAATTAAA
GATGCTATAGGAACAATCTCGAGCTTTACTTTTAGTAAGTTCAGACACCAAGTTAATTTT
AAAAGACTTATGAATGGCATAATCTTCAAGTTTGACTTCTTTGGTTTTGCCCTCTGCTCT
GCAGGGCTGGTCCTTTTCCTACTGGGGCTAACCTTTGGTGGTAATAAATATAGTTGGAAC
TCTGGCCAAGTCATCGCATATTTGGTTTTGGGTGTCTTACTTTTTATTTTTTCATTGGTG

This is a FASTA file that we import under with:

input <- read.fasta(file = inputdatfile)
names(input)

[1] "YCG9" "YCG8" "ALPHA2" "ALPHA1" "CHA1" "KRR1"
[7] "PRD1" "KAR4" "PBN1" "LRE1" "APA1" "YCE9"
[13] "YCE8" "YCE7" "YCE5" "YCE6" "YCE4" "PDI1"
[19] "GLK1" "YCD8" "SRO9" "YCD6" "YCD5" "YCD3"
[25] "STE50" "HIS4" "BIK1" "FUS1" "YC08" "AGP1"
[31] "LEU2" "NFS1" "BUD3" "GBP2" "ILV6" "CWH36"
[37] "PEL1" "RER1" "CDC10" "MRPL32" "YCP4" "CIT2"
[43] "YCP7" "SAT4" "RVS161" "YCQ0" "ADP1" "PGK1"
[49] "POL4" "YCQ7" "SRD1" "MAK32" "PET18" "MAK31"
[55] "HSP30" "YCR3" "SYN" "YCR6" "GNS1" "FEN2"
[61] "RIM1" "CRY1" "YCS2" "YCS3" "GNS1" "RBK1"
[67] "PHO87" "BUD5" "MATALPHA2" "MATALPHA1" "TSM1" "YCT5"
[73] "PETCR46" "YCT7" "YCT9" "ARE1" "RSC6" "THR4"

8



[79] "CTR86" "PWP2" "YCU9" "YCV1" "G10" "HCM1"
[85] "RAD18" "CYPR" "YCW1" "YCW2" "SSK22" "SOL2"
[91] "ERS1" "PAT1" "SRB8" "YCX3" "TUP1" "YC16"
[97] "ABP1" "KIN82" "MSH3" "CDC39" "YCY4" "A2"
[103] "GIT1" "YCZ0" "YCZ1" "YCZ2" "YCZ3" "PAU3"
[109] "YCZ5" "YCZ6" "YCZ7"

The file input.out contains the values obtained with codonW for the GC
content and GC3s content:

inputoutfile <- system.file("sequences/input.out", package = "seqinr")
cat(readLines(inputoutfile, n=10), sep = "\n")

title GC3s GC
YCG9_Probable__________13 0.335 0.394
YCG8________573_residues_ 0.439 0.446
ALPHA2________633_residue 0.328 0.351
ALPHA1________528_residue 0.345 0.379
CHA1_________1083_residue 0.328 0.394
KRR1__________951_residue 0.364 0.384
PRD1_________2139_residue 0.430 0.397
KAR4_________1008_residue 0.354 0.383
PBN1_________1251_residue 0.330 0.386

input.res <- read.table(inputoutfile, header = TRUE)
head(input.res)

title GC3s GC
1 YCG9_Probable__________13 0.335 0.394
2 YCG8________573_residues_ 0.439 0.446
3 ALPHA2________633_residue 0.328 0.351
4 ALPHA1________528_residue 0.345 0.379
5 CHA1_________1083_residue 0.328 0.394
6 KRR1__________951_residue 0.364 0.384

Let’s try to reproduce the results for the G+C content, we know that we
have to remove the last stop codon:

input.gc <- sapply(input, function(s) GC(s[1:(length(s)-3)]))
max(abs(input.gc - input.res$GC))

[1] 0.0004946237

plot(x = input.gc, y = input.res$GC, las = 1,
xlab = "Results with GC()", ylab = "Results from codonW",
main = "Comparison of G+C content results")
abline(c(0,1))
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The results are consistent if we consider that we have 3 significant digits in
the file input.out. Now, let’s try to reproduce the results for G+C in third
codon positions:

input.gc3 <- sapply(input, function(s) GC3(s[1:(length(s)-3)]))
max(abs(input.gc3 - input.res$GC3s))

[1] 0.054

plot(x = input.gc3, y = input.res$GC3s, las = 1,
xlab = "Results with GC3()", ylab = "Results from codonW",
main = "Comparison of G+C content in third codon positions results")
abline(c(0,1))
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There is clearly a problem here. Looking into the documentation of codonW,
GC3s is the G+C content in third codon position after removing non-synonymous
and stop codons (those corresponding to Met, Trp, Stp). Let’s remove these
codons:

codons <- words()
names(codons) <- sapply(codons, function(c) aaa(translate(s2c(c), numcode = 1)))
okcodons <- codons[! names(codons) %in% c("Met", "Trp", "Stp")]
gc3s <- function(s){

tmp <- splitseq(s)
tmp <- tmp[tmp %in% okcodons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3(tmp)

}
input.gc3s <- sapply(input, gc3s)
max(abs(input.gc3s - input.res$GC3s))

[1] 0.0004980843

plot(x = input.gc3s, y = input.res$GC3s, las = 1,
xlab = "Results with GC3()", ylab = "Results from codonW",
main = "Comparison of G+C content in third codon positions results\n(Met, Trp and Stp codons excluded)")
abline(c(0,1))
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The results are now consistent. But thinking more about it there is still a
problem with the codons for Ile:

codons[names(codons) == "Ile"]

Ile Ile Ile
"ata" "atc" "att"

There are three codons for Ile. If the distribution of the four bases was
uniform and selectively neutral in third codon position of synonymous codons,
then we would expect to get a G+C of 50% in quartet and duet codons at third
codons positions because they all have the same number of W (A or T )and S
(C or G) bases in third position. But for Ile we have two codons ending in W
versus only one in S so that we would get a G+C of 1

3 instead of 1
2 . This point

was clearly stated [11] by Sueoka in 1988:

G + C Content of the Three Codons Positions. In the present
analysis, observed G + C contents of the first, second, and third
codon positions (P1, P2, and P3, respectively) are corrected average
G + C contents of the three codon positions that are calculated from
56 triplets out of 64. Because of the inequality of α and γ at the
third codon position, the three stop codons (TAA, TAG, and TGA)
and the three codons for isoleucine (ATT, ATC, and ATA) were
excluded in calculation of P3, and two single codons for methionine
(ATG) and tryptophan (TGG) were excluded in all three (P1, P2,
and P3)
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Let’s compute P3 and compare it with GC3s:

P3codons <- codons[! names(codons) %in% c("Met", "Trp", "Ile", "Stp")]
P3 <- function(s){

tmp <- splitseq(s)
tmp <- tmp[tmp %in% P3codons]
tmp <- s2c(paste(tmp, collapse = ""))
GC3(tmp)

}
input.P3 <- sapply(input, P3)
max(abs(input.P3 - input.res$GC3s))

[1] 0.02821505

plot(x = input.P3, y = input.res$GC3s, las = 1,
xlab = "Results with P3", ylab = "Results from codonW GC3s",
main = "Comparison of P3 and GC3s")
abline(c(0,1))
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This is not exactly the same, the maximum observed difference here is about
3%. In practice, P3, GC3, and GC3s are only slightly different [12].

6 How do I get a sequence from its name?

This question is adapted from an e-mail (22 Jun 2006) by Gang Xu. I know
that the UniProt (SwissProt) entry of my protein is P08758, if I know its name3,
how can I get the sequence?

3More exactly, this is the accession number. Sequence names are not stable over time, it’s
always better to use the accession numbers.
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choosebank("swissprot")
myprot <- query("myprot","AC=P08758")
getSequence(myprot$req[[1]])

[1] "M" "A" "Q" "V" "L" "R" "G" "T" "V" "T" "D" "F" "P" "G" "F" "D" "E" "R"
[19] "A" "D" "A" "E" "T" "L" "R" "K" "A" "M" "K" "G" "L" "G" "T" "D" "E" "E"
[37] "S" "I" "L" "T" "L" "L" "T" "S" "R" "S" "N" "A" "Q" "R" "Q" "E" "I" "S"
[55] "A" "A" "F" "K" "T" "L" "F" "G" "R" "D" "L" "L" "D" "D" "L" "K" "S" "E"
[73] "L" "T" "G" "K" "F" "E" "K" "L" "I" "V" "A" "L" "M" "K" "P" "S" "R" "L"
[91] "Y" "D" "A" "Y" "E" "L" "K" "H" "A" "L" "K" "G" "A" "G" "T" "N" "E" "K"
[109] "V" "L" "T" "E" "I" "I" "A" "S" "R" "T" "P" "E" "E" "L" "R" "A" "I" "K"
[127] "Q" "V" "Y" "E" "E" "E" "Y" "G" "S" "S" "L" "E" "D" "D" "V" "V" "G" "D"
[145] "T" "S" "G" "Y" "Y" "Q" "R" "M" "L" "V" "V" "L" "L" "Q" "A" "N" "R" "D"
[163] "P" "D" "A" "G" "I" "D" "E" "A" "Q" "V" "E" "Q" "D" "A" "Q" "A" "L" "F"
[181] "Q" "A" "G" "E" "L" "K" "W" "G" "T" "D" "E" "E" "K" "F" "I" "T" "I" "F"
[199] "G" "T" "R" "S" "V" "S" "H" "L" "R" "K" "V" "F" "D" "K" "Y" "M" "T" "I"
[217] "S" "G" "F" "Q" "I" "E" "E" "T" "I" "D" "R" "E" "T" "S" "G" "N" "L" "E"
[235] "Q" "L" "L" "L" "A" "V" "V" "K" "S" "I" "R" "S" "I" "P" "A" "Y" "L" "A"
[253] "E" "T" "L" "Y" "Y" "A" "M" "K" "G" "A" "G" "T" "D" "D" "H" "T" "L" "I"
[271] "R" "V" "M" "V" "S" "R" "S" "E" "I" "D" "L" "F" "N" "I" "R" "K" "E" "F"
[289] "R" "K" "N" "F" "A" "T" "S" "L" "Y" "S" "M" "I" "K" "G" "D" "T" "S" "G"
[307] "D" "Y" "K" "K" "A" "L" "L" "L" "L" "C" "G" "E" "D" "D"
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